Spaces:
Sleeping
Sleeping
import time | |
import json | |
import requests | |
import gradio as gr | |
STYLE = """ | |
.no-border { | |
border: none !important; | |
} | |
.group-border { | |
padding: 10px; | |
border-width: 1px; | |
border-radius: 10px; | |
border-color: gray; | |
border-style: solid; | |
box-shadow: 1px 1px 3px; | |
} | |
.control-label-font { | |
font-size: 13pt !important; | |
} | |
.control-button { | |
background: none !important; | |
border-color: #69ade2 !important; | |
border-width: 2px !important; | |
color: #69ade2 !important; | |
} | |
.center { | |
text-align: center; | |
} | |
.right { | |
text-align: right; | |
} | |
.no-label { | |
padding: 0px !important; | |
} | |
.no-label > label > span { | |
display: none; | |
} | |
.small-big { | |
font-size: 12pt !important; | |
} | |
""" | |
def avaliable_providers(): | |
providers = [] | |
headers = { | |
"Content-Type": "application/json", | |
} | |
endpoint_url = "https://api.endpoints.huggingface.cloud/v2/provider" | |
response = requests.get(endpoint_url, headers=headers) | |
providers = {} | |
for provider in response.json()['vendors']: | |
if provider['status'] == 'available': | |
regions = {} | |
availability = False | |
for region in provider['regions']: | |
if region["status"] == "available": | |
regions[region['name']] = { | |
"label": region['label'], | |
"computes": region['computes'] | |
} | |
availability = True | |
if availability: | |
providers[provider['name']] = regions | |
return providers | |
providers = avaliable_providers() | |
def update_regions(provider): | |
avalialbe_regions = [] | |
regions = providers[provider] | |
for region, attributes in regions.items(): | |
avalialbe_regions.append(f"{region}[{attributes['label']}]") | |
return gr.Dropdown.update( | |
choices=avalialbe_regions, | |
value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None | |
) | |
def update_compute_options(provider, region): | |
avalialbe_compute_options = [] | |
computes = providers[provider][region.split("[")[0].strip()]["computes"] | |
for compute in computes: | |
if compute['status'] == 'available': | |
accelerator = compute['accelerator'] | |
numAccelerators = compute['numAccelerators'] | |
memoryGb = compute['memoryGb'] | |
architecture = compute['architecture'] | |
instanceType = compute['instanceType'] | |
pricePerHour = compute['pricePerHour'] | |
type = f"{numAccelerators}vCPU {memoryGb} 路 {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}" | |
avalialbe_compute_options.append( | |
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] 路 {type} 路 {instanceType} 路 ${pricePerHour}/hour" | |
) | |
return gr.Dropdown.update( | |
choices=avalialbe_compute_options, | |
value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None | |
) | |
def submit( | |
hf_account_input, | |
hf_token_input, | |
endpoint_name_input, | |
provider_selector, | |
region_selector, | |
repository_selector, | |
task_selector, | |
framework_selector, | |
compute_selector, | |
min_node_selector, | |
max_node_selector, | |
security_selector, | |
custom_kernel, | |
max_input_length, | |
max_tokens, | |
max_batch_prefill_token, | |
max_batch_total_token | |
): | |
compute_resources = compute_selector.split("路") | |
accelerator = compute_resources[0][:3].strip() | |
size_l_index = compute_resources[0].index("[") - 1 | |
size_r_index = compute_resources[0].index("]") | |
size = compute_resources[0][size_l_index : size_r_index].strip() | |
type = compute_resources[-2].strip() | |
payload = { | |
"accountId": hf_account_input.strip(), | |
"compute": { | |
"accelerator": accelerator.lower(), | |
"instanceSize": size[1:], | |
"instanceType": type, | |
"scaling": { | |
"maxReplica": int(max_node_selector), | |
"minReplica": int(min_node_selector) | |
} | |
}, | |
"model": { | |
"framework": framework_selector.lower(), | |
"image": { | |
"custom": { | |
"health_route": "/health", | |
"env": { | |
"DISABLE_CUSTOM_KERNELS": "true" if custom_kernel == "Enabled" else "false", | |
"MAX_BATCH_PREFILL_TOKENS": str(max_batch_prefill_token), | |
"MAX_BATCH_TOTAL_TOKENS": str(max_batch_total_token), | |
"MAX_INPUT_LENGTH": str(max_input_length), | |
"MAX_TOTAL_TOKENS": str(max_tokens), | |
"MODEL_ID": repository_selector.lower(), | |
# QUANTIZE: 'bitsandbytes' | 'gptq'; | |
}, | |
"url": "ghcr.io/huggingface/text-generation-inference:1.0.1", | |
} | |
}, | |
"repository": repository_selector.lower(), | |
# "revision": "main", | |
"task": task_selector.lower() | |
}, | |
"name": endpoint_name_input.strip().lower(), | |
"provider": { | |
"region": region_selector.split("[")[0].lower(), | |
"vendor": provider_selector.lower() | |
}, | |
"type": security_selector.lower() | |
} | |
print(payload) | |
payload = json.dumps(payload) | |
print(payload) | |
headers = { | |
"Authorization": f"Bearer {hf_token_input.strip()}", | |
"Content-Type": "application/json", | |
} | |
endpoint_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/"#{hf_account_input.strip()}" | |
print(endpoint_url) | |
response = requests.post(endpoint_url, headers=headers, data=payload) | |
if response.status_code == 400: | |
return f"{response.text}. Malformed data in {payload}" | |
elif response.status_code == 401: | |
return "Invalid token" | |
elif response.status_code == 409: | |
return f"Endpoint {endpoint_name_input} already exists" | |
elif response.status_code == 202: | |
return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@main.\nPlease check out the progress at https://ui.endpoints.huggingface.co/endpoints." | |
else: | |
return f"something went wrong {response.status_code} = {response.text}" | |
with gr.Blocks(css=STYLE) as hf_endpoint: | |
with gr.Tab("Hugging Face", elem_classes=["no-border"]): | |
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"]) | |
with gr.Column(elem_classes=["group-border"]): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Hugging Face account ID (name)""") | |
hf_account_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"]) | |
with gr.Column(): | |
gr.Markdown("### Hugging Face access token") | |
hf_token_input = gr.Textbox(show_label=False, type="password", elem_classes=["no-label", "small-big"]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Target model | |
Model from the Hugging Face hub""") | |
repository_selector = gr.Textbox( | |
value="NousResearch/Nous-Hermes-Llama2-13b", | |
interactive=False, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Target model version(branch) | |
Branch name of the Model""") | |
revision_selector = gr.Textbox( | |
value=f"main", | |
interactive=False, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(elem_classes=["group-border"]): | |
with gr.Column(): | |
gr.Markdown("""### Endpoint name | |
Name for your new endpoint""") | |
endpoint_name_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Cloud Provider""") | |
provider_selector = gr.Dropdown( | |
choices=providers.keys(), | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Cloud Region""") | |
region_selector = gr.Dropdown( | |
[], | |
value="", | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Row(visible=False): | |
with gr.Column(): | |
gr.Markdown("### Task") | |
task_selector = gr.Textbox( | |
value="text-generation", | |
interactive=False, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("### Framework") | |
framework_selector = gr.Textbox( | |
value="PyTorch", | |
interactive=False, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Compute Instance Type""") | |
compute_selector = gr.Dropdown( | |
[], | |
value="", | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Min Number of Nodes""") | |
min_node_selector = gr.Number( | |
value=1, | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Max Number of Nodes""") | |
max_node_selector = gr.Number( | |
value=1, | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Security Level""") | |
security_selector = gr.Radio( | |
choices=["Protected", "Public", "Private"], | |
value="Public", | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(elem_classes=["group-border"]): | |
with gr.Accordion("Serving Container", open=False, elem_classes=["no-border"]): | |
with gr.Column(): | |
gr.Markdown("""### Container Type | |
Text Generation Inference is an optimized container for text generation task""") | |
_ = gr.Textbox("Text Generation Inference", show_label=False, elem_classes=["no-label", "small-big"]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Custom Cuda Kernels | |
TGI uses custom kernels to speed up inference for some models. You can try disabling them if you encounter issues.""") | |
custom_kernel = gr.Dropdown( | |
value="Enabled", | |
choices=["Enabled", "Disabled"], | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Quantization | |
Quantization can reduce the model size and improve latency, with little degradation in model accuracy.""") | |
_ = gr.Dropdown( | |
value="None", | |
choices=["None", "Bitsandbytes", "GPTQ"], | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Max Input Length (per Query) | |
Increasing this value can impact the amount of RAM required. Some models can only handle a finite range of sequences.""") | |
max_input_length = gr.Number( | |
value=1024, | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Max Number of Tokens (per Query) | |
The larger this value, the more memory each request will consume and the less effective batching can be.""") | |
max_tokens = gr.Number( | |
value=1512, | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""### Max Batch Prefill Tokens | |
Number of prefill tokens used during continuous batching. It can be useful to adjust this number since the prefill operation is memory-intensive and compute-bound.""") | |
max_batch_prefill_token = gr.Number( | |
value=2048, | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
with gr.Column(): | |
gr.Markdown("""### Max Batch Total Tokens | |
Number of tokens that can be passed before forcing waiting queries to be put on the batch. A value of 1000 can fit 10 queries of 100 tokens or a single query of 1000 tokens.""") | |
max_batch_total_token = gr.Number( | |
value=None, | |
interactive=True, | |
show_label=False, | |
elem_classes=["no-label", "small-big"] | |
) | |
submit_button = gr.Button( | |
value="Submit", | |
elem_classes=["control-label-font", "control-button"] | |
) | |
status_txt = gr.Textbox( | |
value="any status update will be displayed here", | |
interactive=False, | |
elem_classes=["no-label"] | |
) | |
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector) | |
region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector) | |
submit_button.click( | |
submit, | |
inputs=[ | |
hf_account_input, | |
hf_token_input, | |
endpoint_name_input, | |
provider_selector, | |
region_selector, | |
repository_selector, | |
task_selector, | |
framework_selector, | |
compute_selector, | |
min_node_selector, | |
max_node_selector, | |
security_selector, | |
custom_kernel, | |
max_input_length, | |
max_tokens, | |
max_batch_prefill_token, | |
max_batch_total_token], | |
outputs=status_txt) | |
with gr.Tab("AWS", elem_classes=["no-border"]): | |
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"]) | |
with gr.Tab("GCP", elem_classes=["no-border"]): | |
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"]) | |
with gr.Tab("Azure", elem_classes=["no-border"]): | |
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"]) | |
with gr.Tab("Lambdalabs", elem_classes=["no-border"]): | |
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"]) | |
hf_endpoint.launch(enable_queue=True, debug=True) | |