Spaces:
Paused
Paused
import copy | |
import glob | |
import inspect | |
import json | |
import os | |
import random | |
import sys | |
import re | |
from typing import Dict, List, Any, Callable, Tuple, TextIO | |
from argparse import ArgumentParser | |
import black | |
from comfyui_to_python_utils import ( | |
import_custom_nodes, | |
find_path, | |
add_comfyui_directory_to_sys_path, | |
add_extra_model_paths, | |
get_value_at_index, | |
) | |
add_comfyui_directory_to_sys_path() | |
from nodes import NODE_CLASS_MAPPINGS | |
DEFAULT_INPUT_FILE = "workflow_api.json" | |
DEFAULT_OUTPUT_FILE = "workflow_api.py" | |
DEFAULT_QUEUE_SIZE = 10 | |
class FileHandler: | |
"""Handles reading and writing files. | |
This class provides methods to read JSON data from an input file and write code to an output file. | |
""" | |
def read_json_file(file_path: str | TextIO, encoding: str = "utf-8") -> dict: | |
""" | |
Reads a JSON file and returns its contents as a dictionary. | |
Args: | |
file_path (str): The path to the JSON file. | |
Returns: | |
dict: The contents of the JSON file as a dictionary. | |
Raises: | |
FileNotFoundError: If the file is not found, it lists all JSON files in the directory of the file path. | |
ValueError: If the file is not a valid JSON. | |
""" | |
if hasattr(file_path, "read"): | |
return json.load(file_path) | |
with open(file_path, "r", encoding="utf-8") as file: | |
data = json.load(file) | |
return data | |
def write_code_to_file(file_path: str | TextIO, code: str) -> None: | |
"""Write the specified code to a Python file. | |
Args: | |
file_path (str): The path to the Python file. | |
code (str): The code to write to the file. | |
Returns: | |
None | |
""" | |
if isinstance(file_path, str): | |
# Extract directory from the filename | |
directory = os.path.dirname(file_path) | |
# If the directory does not exist, create it | |
if directory and not os.path.exists(directory): | |
os.makedirs(directory) | |
# Save the code to a .py file | |
with open(file_path, "w", encoding="utf-8") as file: | |
file.write(code) | |
else: | |
file_path.write(code) | |
class LoadOrderDeterminer: | |
"""Determine the load order of each key in the provided dictionary. | |
This class places the nodes without node dependencies first, then ensures that any node whose | |
result is used in another node will be added to the list in the order it should be executed. | |
Attributes: | |
data (Dict): The dictionary for which to determine the load order. | |
node_class_mappings (Dict): Mappings of node classes. | |
""" | |
def __init__(self, data: Dict, node_class_mappings: Dict): | |
"""Initialize the LoadOrderDeterminer with the given data and node class mappings. | |
Args: | |
data (Dict): The dictionary for which to determine the load order. | |
node_class_mappings (Dict): Mappings of node classes. | |
""" | |
self.data = data | |
self.node_class_mappings = node_class_mappings | |
self.visited = {} | |
self.load_order = [] | |
self.is_special_function = False | |
def determine_load_order(self) -> List[Tuple[str, Dict, bool]]: | |
"""Determine the load order for the given data. | |
Returns: | |
List[Tuple[str, Dict, bool]]: A list of tuples representing the load order. | |
""" | |
self._load_special_functions_first() | |
self.is_special_function = False | |
for key in self.data: | |
if key not in self.visited: | |
self._dfs(key) | |
return self.load_order | |
def _dfs(self, key: str) -> None: | |
"""Depth-First Search function to determine the load order. | |
Args: | |
key (str): The key from which to start the DFS. | |
Returns: | |
None | |
""" | |
# Mark the node as visited. | |
self.visited[key] = True | |
inputs = self.data[key]["inputs"] | |
# Loop over each input key. | |
for input_key, val in inputs.items(): | |
# If the value is a list and the first item in the list has not been visited yet, | |
# then recursively apply DFS on the dependency. | |
if isinstance(val, list) and val[0] not in self.visited: | |
self._dfs(val[0]) | |
# Add the key and its corresponding data to the load order list. | |
self.load_order.append((key, self.data[key], self.is_special_function)) | |
def _load_special_functions_first(self) -> None: | |
"""Load functions without dependencies, loaderes, and encoders first. | |
Returns: | |
None | |
""" | |
# Iterate over each key in the data to check for loader keys. | |
for key in self.data: | |
class_def = self.node_class_mappings[self.data[key]["class_type"]]() | |
# Check if the class is a loader class or meets specific conditions. | |
if ( | |
class_def.CATEGORY == "loaders" | |
or class_def.FUNCTION in ["encode"] | |
or not any( | |
isinstance(val, list) for val in self.data[key]["inputs"].values() | |
) | |
): | |
self.is_special_function = True | |
# If the key has not been visited, perform a DFS from that key. | |
if key not in self.visited: | |
self._dfs(key) | |
class CodeGenerator: | |
"""Generates Python code for a workflow based on the load order. | |
Attributes: | |
node_class_mappings (Dict): Mappings of node classes. | |
base_node_class_mappings (Dict): Base mappings of node classes. | |
""" | |
def __init__(self, node_class_mappings: Dict, base_node_class_mappings: Dict): | |
"""Initialize the CodeGenerator with given node class mappings. | |
Args: | |
node_class_mappings (Dict): Mappings of node classes. | |
base_node_class_mappings (Dict): Base mappings of node classes. | |
""" | |
self.node_class_mappings = node_class_mappings | |
self.base_node_class_mappings = base_node_class_mappings | |
def generate_workflow( | |
self, | |
load_order: List, | |
queue_size: int = 10, | |
) -> str: | |
"""Generate the execution code based on the load order. | |
Args: | |
load_order (List): A list of tuples representing the load order. | |
queue_size (int): The number of photos that will be created by the script. | |
Returns: | |
str: Generated execution code as a string. | |
""" | |
# Create the necessary data structures to hold imports and generated code | |
import_statements, executed_variables, special_functions_code, code = ( | |
set(["NODE_CLASS_MAPPINGS"]), | |
{}, | |
[], | |
[], | |
) | |
# This dictionary will store the names of the objects that we have already initialized | |
initialized_objects = {} | |
custom_nodes = False | |
# Loop over each dictionary in the load order list | |
for idx, data, is_special_function in load_order: | |
# Generate class definition and inputs from the data | |
inputs, class_type = data["inputs"], data["class_type"] | |
input_types = self.node_class_mappings[class_type].INPUT_TYPES() | |
class_def = self.node_class_mappings[class_type]() | |
# If required inputs are not present, skip the node as it will break the code if passed through to the script | |
missing_required_variable = False | |
if "required" in input_types.keys(): | |
for required in input_types["required"]: | |
if required not in inputs.keys(): | |
missing_required_variable = True | |
if missing_required_variable: | |
continue | |
# If the class hasn't been initialized yet, initialize it and generate the import statements | |
if class_type not in initialized_objects: | |
# No need to use preview image nodes since we are executing the script in a terminal | |
if class_type == "PreviewImage": | |
continue | |
class_type, import_statement, class_code = self.get_class_info( | |
class_type | |
) | |
initialized_objects[class_type] = self.clean_variable_name(class_type) | |
if class_type in self.base_node_class_mappings.keys(): | |
import_statements.add(import_statement) | |
if class_type not in self.base_node_class_mappings.keys(): | |
custom_nodes = True | |
special_functions_code.append(class_code) | |
# Get all possible parameters for class_def | |
class_def_params = self.get_function_parameters( | |
getattr(class_def, class_def.FUNCTION) | |
) | |
no_params = class_def_params is None | |
# Remove any keyword arguments from **inputs if they are not in class_def_params | |
inputs = { | |
key: value | |
for key, value in inputs.items() | |
if no_params or key in class_def_params | |
} | |
# Deal with hidden variables | |
if ( | |
"hidden" in input_types.keys() | |
and "unique_id" in input_types["hidden"].keys() | |
): | |
inputs["unique_id"] = random.randint(1, 2**64) | |
elif class_def_params is not None: | |
if "unique_id" in class_def_params: | |
inputs["unique_id"] = random.randint(1, 2**64) | |
# Create executed variable and generate code | |
executed_variables[idx] = f"{self.clean_variable_name(class_type)}_{idx}" | |
inputs = self.update_inputs(inputs, executed_variables) | |
if is_special_function: | |
special_functions_code.append( | |
self.create_function_call_code( | |
initialized_objects[class_type], | |
class_def.FUNCTION, | |
executed_variables[idx], | |
is_special_function, | |
**inputs, | |
) | |
) | |
else: | |
code.append( | |
self.create_function_call_code( | |
initialized_objects[class_type], | |
class_def.FUNCTION, | |
executed_variables[idx], | |
is_special_function, | |
**inputs, | |
) | |
) | |
# Generate final code by combining imports and code, and wrap them in a main function | |
final_code = self.assemble_python_code( | |
import_statements, special_functions_code, code, queue_size, custom_nodes | |
) | |
return final_code | |
def create_function_call_code( | |
self, | |
obj_name: str, | |
func: str, | |
variable_name: str, | |
is_special_function: bool, | |
**kwargs, | |
) -> str: | |
"""Generate Python code for a function call. | |
Args: | |
obj_name (str): The name of the initialized object. | |
func (str): The function to be called. | |
variable_name (str): The name of the variable that the function result should be assigned to. | |
is_special_function (bool): Determines the code indentation. | |
**kwargs: The keyword arguments for the function. | |
Returns: | |
str: The generated Python code. | |
""" | |
args = ", ".join(self.format_arg(key, value) for key, value in kwargs.items()) | |
# Generate the Python code | |
code = f"{variable_name} = {obj_name}.{func}({args})\n" | |
# If the code contains dependencies and is not a loader or encoder, indent the code because it will be placed inside | |
# of a for loop | |
if not is_special_function: | |
code = f"\t{code}" | |
return code | |
def format_arg(self, key: str, value: any) -> str: | |
"""Formats arguments based on key and value. | |
Args: | |
key (str): Argument key. | |
value (any): Argument value. | |
Returns: | |
str: Formatted argument as a string. | |
""" | |
if key == "noise_seed" or key == "seed": | |
return f"{key}=random.randint(1, 2**64)" | |
elif isinstance(value, str): | |
value = value.replace("\n", "\\n").replace('"', "'") | |
return f'{key}="{value}"' | |
elif isinstance(value, dict) and "variable_name" in value: | |
return f'{key}={value["variable_name"]}' | |
return f"{key}={value}" | |
def assemble_python_code( | |
self, | |
import_statements: set, | |
speical_functions_code: List[str], | |
code: List[str], | |
queue_size: int, | |
custom_nodes=False, | |
) -> str: | |
"""Generates the final code string. | |
Args: | |
import_statements (set): A set of unique import statements. | |
speical_functions_code (List[str]): A list of special functions code strings. | |
code (List[str]): A list of code strings. | |
queue_size (int): Number of photos that will be generated by the script. | |
custom_nodes (bool): Whether to include custom nodes in the code. | |
Returns: | |
str: Generated final code as a string. | |
""" | |
# Get the source code of the utils functions as a string | |
func_strings = [] | |
for func in [ | |
get_value_at_index, | |
find_path, | |
add_comfyui_directory_to_sys_path, | |
add_extra_model_paths, | |
]: | |
func_strings.append(f"\n{inspect.getsource(func)}") | |
# Define static import statements required for the script | |
static_imports = ( | |
[ | |
"import os", | |
"import random", | |
"import sys", | |
"from typing import Sequence, Mapping, Any, Union", | |
"import torch", | |
] | |
+ func_strings | |
+ ["\n\nadd_comfyui_directory_to_sys_path()\nadd_extra_model_paths()\n"] | |
) | |
# Check if custom nodes should be included | |
if custom_nodes: | |
static_imports.append(f"\n{inspect.getsource(import_custom_nodes)}\n") | |
custom_nodes = "import_custom_nodes()\n\t" | |
else: | |
custom_nodes = "" | |
# Create import statements for node classes | |
imports_code = [ | |
f"from nodes import {', '.join([class_name for class_name in import_statements])}" | |
] | |
# Assemble the main function code, including custom nodes if applicable | |
main_function_code = ( | |
"def main():\n\t" | |
+ f"{custom_nodes}with torch.inference_mode():\n\t\t" | |
+ "\n\t\t".join(speical_functions_code) | |
+ f"\n\n\t\tfor q in range({queue_size}):\n\t\t" | |
+ "\n\t\t".join(code) | |
) | |
# Concatenate all parts to form the final code | |
final_code = "\n".join( | |
static_imports | |
+ imports_code | |
+ ["", main_function_code, "", 'if __name__ == "__main__":', "\tmain()"] | |
) | |
# Format the final code according to PEP 8 using the Black library | |
final_code = black.format_str(final_code, mode=black.Mode()) | |
return final_code | |
def get_class_info(self, class_type: str) -> Tuple[str, str, str]: | |
"""Generates and returns necessary information about class type. | |
Args: | |
class_type (str): Class type. | |
Returns: | |
Tuple[str, str, str]: Updated class type, import statement string, class initialization code. | |
""" | |
import_statement = class_type | |
variable_name = self.clean_variable_name(class_type) | |
if class_type in self.base_node_class_mappings.keys(): | |
class_code = f"{variable_name} = {class_type.strip()}()" | |
else: | |
class_code = f'{variable_name} = NODE_CLASS_MAPPINGS["{class_type}"]()' | |
return class_type, import_statement, class_code | |
def clean_variable_name(class_type: str) -> str: | |
""" | |
Remove any characters from variable name that could cause errors running the Python script. | |
Args: | |
class_type (str): Class type. | |
Returns: | |
str: Cleaned variable name with no special characters or spaces | |
""" | |
# Convert to lowercase and replace spaces with underscores | |
clean_name = class_type.lower().strip().replace("-", "_").replace(" ", "_") | |
# Remove characters that are not letters, numbers, or underscores | |
clean_name = re.sub(r"[^a-z0-9_]", "", clean_name) | |
# Ensure that it doesn't start with a number | |
if clean_name[0].isdigit(): | |
clean_name = "_" + clean_name | |
return clean_name | |
def get_function_parameters(self, func: Callable) -> List: | |
"""Get the names of a function's parameters. | |
Args: | |
func (Callable): The function whose parameters we want to inspect. | |
Returns: | |
List: A list containing the names of the function's parameters. | |
""" | |
signature = inspect.signature(func) | |
parameters = { | |
name: param.default if param.default != param.empty else None | |
for name, param in signature.parameters.items() | |
} | |
catch_all = any( | |
param.kind == inspect.Parameter.VAR_KEYWORD | |
for param in signature.parameters.values() | |
) | |
return list(parameters.keys()) if not catch_all else None | |
def update_inputs(self, inputs: Dict, executed_variables: Dict) -> Dict: | |
"""Update inputs based on the executed variables. | |
Args: | |
inputs (Dict): Inputs dictionary to update. | |
executed_variables (Dict): Dictionary storing executed variable names. | |
Returns: | |
Dict: Updated inputs dictionary. | |
""" | |
for key in inputs.keys(): | |
if ( | |
isinstance(inputs[key], list) | |
and inputs[key][0] in executed_variables.keys() | |
): | |
inputs[key] = { | |
"variable_name": f"get_value_at_index({executed_variables[inputs[key][0]]}, {inputs[key][1]})" | |
} | |
return inputs | |
class ComfyUItoPython: | |
"""Main workflow to generate Python code from a workflow_api.json file. | |
Attributes: | |
input_file (str): Path to the input JSON file. | |
output_file (str): Path to the output Python file. | |
queue_size (int): The number of photos that will be created by the script. | |
node_class_mappings (Dict): Mappings of node classes. | |
base_node_class_mappings (Dict): Base mappings of node classes. | |
""" | |
def __init__( | |
self, | |
workflow: str = "", | |
input_file: str = "", | |
output_file: str | TextIO = "", | |
queue_size: int = 1, | |
node_class_mappings: Dict = NODE_CLASS_MAPPINGS, | |
needs_init_custom_nodes: bool = False, | |
): | |
"""Initialize the ComfyUItoPython class with the given parameters. Exactly one of workflow or input_file must be specified. | |
Args: | |
workflow (str): The workflow's JSON. | |
input_file (str): Path to the input JSON file. | |
output_file (str | TextIO): Path to the output file or a file-like object. | |
queue_size (int): The number of times a workflow will be executed by the script. Defaults to 1. | |
node_class_mappings (Dict): Mappings of node classes. Defaults to NODE_CLASS_MAPPINGS. | |
needs_init_custom_nodes (bool): Whether to initialize custom nodes. Defaults to False. | |
""" | |
if input_file and workflow: | |
raise ValueError("Can't provide both input_file and workflow") | |
elif not input_file and not workflow: | |
raise ValueError("Needs input_file or workflow") | |
if not output_file: | |
raise ValueError("Needs output_file") | |
self.workflow = workflow | |
self.input_file = input_file | |
self.output_file = output_file | |
self.queue_size = queue_size | |
self.node_class_mappings = node_class_mappings | |
self.needs_init_custom_nodes = needs_init_custom_nodes | |
self.base_node_class_mappings = copy.deepcopy(self.node_class_mappings) | |
self.execute() | |
def execute(self): | |
"""Execute the main workflow to generate Python code. | |
Returns: | |
None | |
""" | |
# Step 1: Import all custom nodes if we need to | |
if self.needs_init_custom_nodes: | |
import_custom_nodes() | |
else: | |
# If they're already imported, we don't know which nodes are custom nodes, so we need to import all of them | |
self.base_node_class_mappings = {} | |
# Step 2: Read JSON data from the input file | |
if self.input_file: | |
data = FileHandler.read_json_file(self.input_file) | |
else: | |
data = json.loads(self.workflow) | |
# Step 3: Determine the load order | |
load_order_determiner = LoadOrderDeterminer(data, self.node_class_mappings) | |
load_order = load_order_determiner.determine_load_order() | |
# Step 4: Generate the workflow code | |
code_generator = CodeGenerator( | |
self.node_class_mappings, self.base_node_class_mappings | |
) | |
generated_code = code_generator.generate_workflow( | |
load_order, queue_size=self.queue_size | |
) | |
# Step 5: Write the generated code to a file | |
FileHandler.write_code_to_file(self.output_file, generated_code) | |
print(f"Code successfully generated and written to {self.output_file}") | |
def run( | |
input_file: str = DEFAULT_INPUT_FILE, | |
output_file: str = DEFAULT_OUTPUT_FILE, | |
queue_size: int = DEFAULT_QUEUE_SIZE, | |
) -> None: | |
"""Generate Python code from a ComfyUI workflow_api.json file. | |
Args: | |
input_file (str): Path to the input JSON file. Defaults to "workflow_api.json". | |
output_file (str): Path to the output Python file. | |
Defaults to "workflow_api.py". | |
queue_size (int): The number of times a workflow will be executed by the script. | |
Defaults to 1. | |
Returns: | |
None | |
""" | |
ComfyUItoPython( | |
input_file=input_file, | |
output_file=output_file, | |
queue_size=queue_size, | |
needs_init_custom_nodes=True, | |
) | |
def main() -> None: | |
"""Main function to generate Python code from a ComfyUI workflow_api.json file.""" | |
parser = ArgumentParser( | |
description="Generate Python code from a ComfyUI workflow_api.json file." | |
) | |
parser.add_argument( | |
"-f", | |
"--input_file", | |
type=str, | |
help="path to the input JSON file", | |
default=DEFAULT_INPUT_FILE, | |
) | |
parser.add_argument( | |
"-o", | |
"--output_file", | |
type=str, | |
help="path to the output Python file", | |
default=DEFAULT_OUTPUT_FILE, | |
) | |
parser.add_argument( | |
"-q", | |
"--queue_size", | |
type=int, | |
help="number of times the workflow will be executed by default", | |
default=DEFAULT_QUEUE_SIZE, | |
) | |
pargs = parser.parse_args() | |
run(**vars(pargs)) | |
print("Done.") | |
if __name__ == "__main__": | |
"""Run the main function.""" | |
main() | |