John6666 commited on
Commit
c913cbf
·
verified ·
1 Parent(s): 49ba79f

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -14,7 +14,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
14
 
15
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
16
  good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
17
- pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
 
18
  torch.cuda.empty_cache()
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
@@ -76,7 +77,7 @@ with gr.Blocks(css=css) as demo:
76
 
77
  result = gr.Image(label="Result", show_label=False)
78
 
79
- with gr.Accordion("Advanced Settings", open=False):
80
  sigmas = gr.Slider(
81
  label="Sigmas",
82
  minimum=0,
@@ -90,12 +91,13 @@ with gr.Blocks(css=css) as demo:
90
  minimum=0,
91
  maximum=MAX_SEED,
92
  step=1,
93
- value=0,
94
  )
95
 
96
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
97
 
98
  with gr.Row():
 
99
  width = gr.Slider(
100
  label="Width",
101
  minimum=256,
 
14
 
15
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
16
  good_vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", torch_dtype=dtype).to(device)
17
+ #pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=taef1).to(device)
18
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype, vae=good_vae).to(device)
19
  torch.cuda.empty_cache()
20
 
21
  MAX_SEED = np.iinfo(np.int32).max
 
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
+ with gr.Accordion("Advanced Settings", open=True):
81
  sigmas = gr.Slider(
82
  label="Sigmas",
83
  minimum=0,
 
91
  minimum=0,
92
  maximum=MAX_SEED,
93
  step=1,
94
+ value=42,
95
  )
96
 
97
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
98
 
99
  with gr.Row():
100
+
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,