multimodalart HF staff commited on
Commit
a673085
·
verified ·
1 Parent(s): be2898d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -1,24 +1,22 @@
1
  import gradio as gr
2
  import torch
3
- from diffusers import AutoencoderKL, FluxTransformer2DModel, FluxFillPipeline
4
  from diffusers.utils import load_image
5
- from controlnet_flux import FluxControlNetModel
6
- from transformer_flux import FluxTransformer2DModel
7
- from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
8
- from transformers import T5EncoderModel, CLIPTextModel
9
  from PIL import Image, ImageDraw
10
  import numpy as np
11
  import spaces
12
  from huggingface_hub import hf_hub_download
13
- from optimum.quanto import freeze, qfloat8, quantize
14
 
15
  pipe = FluxFillPipeline.from_pretrained(
16
  "black-forest-labs/FLUX.1-Fill-dev",
17
  torch_dtype=torch.bfloat16
18
  ).to("cuda")
19
 
20
- pipe.to("cuda")
21
-
22
  def can_expand(source_width, source_height, target_width, target_height, alignment):
23
  if alignment in ("Left", "Right") and source_width >= target_width:
24
  return False
 
1
  import gradio as gr
2
  import torch
3
+ from diffusers import FluxFillPipeline
4
  from diffusers.utils import load_image
5
+ #from controlnet_flux import FluxControlNetModel
6
+ #from transformer_flux import FluxTransformer2DModel
7
+ #from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
8
+ #from transformers import T5EncoderModel, CLIPTextModel
9
  from PIL import Image, ImageDraw
10
  import numpy as np
11
  import spaces
12
  from huggingface_hub import hf_hub_download
13
+ #from optimum.quanto import freeze, qfloat8, quantize
14
 
15
  pipe = FluxFillPipeline.from_pretrained(
16
  "black-forest-labs/FLUX.1-Fill-dev",
17
  torch_dtype=torch.bfloat16
18
  ).to("cuda")
19
 
 
 
20
  def can_expand(source_width, source_height, target_width, target_height, alignment):
21
  if alignment in ("Left", "Right") and source_width >= target_width:
22
  return False