Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models.normalization import FP32LayerNorm, RMSNorm | |
from typing import Callable, List, Optional, Tuple, Union | |
import math | |
import numpy as np | |
from PIL import Image | |
class IPAFluxAttnProcessor2_0(nn.Module): | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): | |
super().__init__() | |
self.hidden_size = hidden_size # 3072 | |
self.cross_attention_dim = cross_attention_dim # 4096 | |
self.scale = scale | |
self.num_tokens = num_tokens | |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
self.norm_added_k = RMSNorm(128, eps=1e-5, elementwise_affine=False) | |
#self.norm_added_v = RMSNorm(128, eps=1e-5, elementwise_affine=False) | |
def __call__( | |
self, | |
attn, | |
hidden_states: torch.FloatTensor, | |
image_emb: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
mask: Optional[torch.Tensor] = None, | |
) -> torch.FloatTensor: | |
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # torch.Size([1, 24, 4800, 128]) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
if image_emb is not None: | |
# `ip-adapter` projections | |
ip_hidden_states = image_emb | |
ip_hidden_states_key_proj = self.to_k_ip(ip_hidden_states) | |
ip_hidden_states_value_proj = self.to_v_ip(ip_hidden_states) | |
ip_hidden_states_key_proj = ip_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
ip_hidden_states_value_proj = ip_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
ip_hidden_states_key_proj = self.norm_added_k(ip_hidden_states_key_proj) | |
#ip_hidden_states_valye_proj = self.norm_added_v(ip_hidden_states_value_proj) | |
ip_hidden_states = F.scaled_dot_product_attention(query, | |
ip_hidden_states_key_proj, | |
ip_hidden_states_value_proj, | |
dropout_p=0.0, is_causal=False) | |
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
ip_hidden_states = ip_hidden_states.to(query.dtype) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) # (512+3840,128) | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
if image_emb is not None: | |
hidden_states = hidden_states + self.scale * ip_hidden_states | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
else: | |
if image_emb is not None: | |
hidden_states = hidden_states + self.scale * ip_hidden_states | |
return hidden_states |