Spaces:
Paused
Paused
File size: 7,030 Bytes
5aa9bba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import glob
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
from pipeline_flux_ipa import FluxPipeline
from transformer_flux import FluxTransformer2DModel
from attention_processor import IPAFluxAttnProcessor2_0
from transformers import AutoProcessor, SiglipVisionModel
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
class MLPProjModel(torch.nn.Module):
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.proj = torch.nn.Sequential(
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
torch.nn.GELU(),
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, id_embeds):
x = self.proj(id_embeds)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.norm(x)
return x
class IPAdapter:
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
self.device = device
self.image_encoder_path = image_encoder_path
self.ip_ckpt = ip_ckpt
self.num_tokens = num_tokens
self.pipe = sd_pipe.to(self.device)
self.set_ip_adapter()
# load image encoder
self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16)
self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path)
# image proj model
self.image_proj_model = self.init_proj()
self.load_ip_adapter()
def init_proj(self):
image_proj_model = MLPProjModel(
cross_attention_dim=self.pipe.transformer.config.joint_attention_dim, # 4096
id_embeddings_dim=1152,
num_tokens=self.num_tokens,
).to(self.device, dtype=torch.bfloat16)
return image_proj_model
def set_ip_adapter(self):
transformer = self.pipe.transformer
ip_attn_procs = {} # 19+38=57
for name in transformer.attn_processors.keys():
if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"):
ip_attn_procs[name] = IPAFluxAttnProcessor2_0(
hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim,
cross_attention_dim=transformer.config.joint_attention_dim,
num_tokens=self.num_tokens,
).to(self.device, dtype=torch.bfloat16)
else:
ip_attn_procs[name] = transformer.attn_processors[name]
transformer.set_attn_processor(ip_attn_procs)
def load_ip_adapter(self):
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
ip_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values())
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if pil_image is not None:
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output
clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16)
else:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16)
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
return image_prompt_embeds
def set_scale(self, scale):
for attn_processor in self.pipe.transformer.attn_processors.values():
if isinstance(attn_processor, IPAFluxAttnProcessor2_0):
attn_processor.scale = scale
def generate(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
scale=1.0,
num_samples=1,
seed=None,
guidance_scale=3.5,
num_inference_steps=24,
**kwargs,
):
self.set_scale(scale)
image_prompt_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
)
if seed is None:
generator = None
else:
generator = torch.Generator(self.device).manual_seed(seed)
images = self.pipe(
prompt=prompt,
image_emb=image_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
**kwargs,
).images
return images
if __name__ == '__main__':
model_path = "black-forest-labs/FLUX.1-dev"
image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = "./ip-adapter.bin"
transformer = FluxTransformer2DModel.from_pretrained(
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = FluxPipeline.from_pretrained(
model_path, transformer=transformer, torch_dtype=torch.bfloat16
)
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
image_dir = "./assets/images/2.jpg"
image_name = image_dir.split("/")[-1]
image = Image.open(image_dir).convert("RGB")
image = resize_img(image)
prompt = "a young girl"
images = ip_model.generate(
pil_image=image,
prompt=prompt,
scale=0.7,
width=960, height=1280,
seed=42
)
images[0].save(f"results/{image_name}") |