File size: 12,040 Bytes
d807efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
from transformers import PretrainedConfig
from PIL import Image
import torch
import numpy as np
import PIL
import os
from tqdm.auto import tqdm
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
def myroll2d(a, delta_x, delta_y):
h, w = a.shape[0], a.shape[1]
delta_x = -delta_x
delta_y = -delta_y
if isinstance(a, np.ndarray):
b = np.zeros ([h,w]).astype(np.uint8)
elif isinstance(a, torch.Tensor):
b = torch.zeros([h,w]).to(torch.uint8)
if delta_x > 0:
left_a = delta_x
right_a = w
left_b = 0
right_b = w - delta_x
else:
left_a = 0
right_a = w + delta_x
left_b = -delta_x
right_b = w
if delta_y > 0:
top_a = delta_y
bot_a = h
top_b = 0
bot_b = h-delta_y
else:
top_a = 0
bot_a = h + delta_y
top_b = -delta_y
bot_b = h
b[left_b: right_b, top_b: bot_b] = a[left_a: right_a, top_a: bot_a]
return b
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision = None, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
@torch.no_grad()
def image2latent(image, vae = None, dtype=None):
with torch.no_grad():
if type(image) is Image or type(image) is PIL.PngImagePlugin.PngImageFile or type(image) is PIL.JpegImagePlugin.JpegImageFile:
image = np.array(image)
if type(image) is torch.Tensor and image.dim() == 4:
latents = image
else:
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype= dtype)
latents = vae.encode(image).latent_dist.sample()
latents = latents * vae.config.scaling_factor
return latents
@torch.no_grad()
def latent2image(latents, return_type = 'np', vae = None):
# needs_upcasting = vae.dtype == torch.float16 and vae.config.force_upcast
needs_upcasting = True
if needs_upcasting:
upcast_vae(vae)
latents = latents.to(next(iter(vae.post_quant_conv.parameters())).dtype)
image = vae.decode(latents /vae.config.scaling_factor, return_dict=False)[0]
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()#[0]
image = (image * 255).astype(np.uint8)
if needs_upcasting:
vae.to(dtype=torch.float16)
return image
def upcast_vae(vae):
dtype = vae.dtype
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(dtype)
vae.decoder.conv_in.to(dtype)
vae.decoder.mid_block.to(dtype)
def prompt_to_emb_length_sdxl(prompt, tokenizer, text_encoder, length = None):
text_input = tokenizer(
[prompt],
padding="max_length",
max_length=length,
truncation=True,
return_tensors="pt",
)
prompt_embeds = text_encoder(text_input.input_ids.to(device),output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return {"prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds}
def prompt_to_emb_length_sd(prompt, tokenizer, text_encoder, length = None):
text_input = tokenizer(
[prompt],
padding="max_length",
max_length=length,
truncation=True,
return_tensors="pt",
)
emb = text_encoder(text_input.input_ids.to(device))[0]
return emb
def sdxl_prepare_input_decom(
set_string_list,
tokenizer,
tokenizer_2,
text_encoder_1,
text_encoder_2,
length = 20,
bsz = 1,
weight_dtype = torch.float32,
resolution = 1024,
normal_token_id_list = []
):
encoder_hidden_states_list = []
pooled_prompt_embeds = 0
for m_idx in range(len(set_string_list)):
prompt_embeds_list = []
if ("#" in set_string_list[m_idx] or "$" in set_string_list[m_idx]) and m_idx not in normal_token_id_list : ###
out = prompt_to_emb_length_sdxl(
set_string_list[m_idx], tokenizer, text_encoder_1, length = length
)
else:
out = prompt_to_emb_length_sdxl(
set_string_list[m_idx], tokenizer, text_encoder_1, length = 77
)
print(m_idx, set_string_list[m_idx])
prompt_embeds, _ = out["prompt_embeds"].to(dtype=weight_dtype), out["pooled_prompt_embeds"].to(dtype=weight_dtype)
prompt_embeds = prompt_embeds.repeat(bsz, 1, 1)
prompt_embeds_list.append(prompt_embeds)
if ("#" in set_string_list[m_idx] or "$" in set_string_list[m_idx]) and m_idx not in normal_token_id_list:
out = prompt_to_emb_length_sdxl(
set_string_list[m_idx], tokenizer_2, text_encoder_2, length = length
)
else:
out = prompt_to_emb_length_sdxl(
set_string_list[m_idx], tokenizer_2, text_encoder_2, length = 77
)
print(m_idx, set_string_list[m_idx])
prompt_embeds = out["prompt_embeds"].to(dtype=weight_dtype)
pooled_prompt_embeds += out["pooled_prompt_embeds"].to(dtype=weight_dtype)
prompt_embeds = prompt_embeds.repeat(bsz, 1, 1)
prompt_embeds_list.append(prompt_embeds)
encoder_hidden_states_list.append(torch.concat(prompt_embeds_list, dim=-1))
add_text_embeds = pooled_prompt_embeds /len(set_string_list)
target_size, original_size,crops_coords_top_left = (resolution,resolution),(resolution,resolution),(0,0)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype,device = pooled_prompt_embeds.device) #[B,6]
return encoder_hidden_states_list, add_text_embeds, add_time_ids
def sd_prepare_input_decom(
set_string_list,
tokenizer,
text_encoder_1,
length = 20,
bsz = 1,
weight_dtype = torch.float32,
normal_token_id_list = []
):
encoder_hidden_states_list = []
for m_idx in range(len(set_string_list)):
if ("#" in set_string_list[m_idx] or "$" in set_string_list[m_idx]) and m_idx not in normal_token_id_list : ###
encoder_hidden_states = prompt_to_emb_length_sd(
set_string_list[m_idx], tokenizer, text_encoder_1, length = length
)
else:
encoder_hidden_states = prompt_to_emb_length_sd(
set_string_list[m_idx], tokenizer, text_encoder_1, length = 77
)
print(m_idx, set_string_list[m_idx])
encoder_hidden_states = encoder_hidden_states.repeat(bsz, 1, 1)
encoder_hidden_states_list.append(encoder_hidden_states.to(dtype=weight_dtype))
return encoder_hidden_states_list
def load_mask (input_folder):
np_mask_dtype = 'uint8'
mask_np_list = []
mask_label_list = []
files = [
file_name for file_name in os.listdir(input_folder) \
if "mask" in file_name and ".npy" in file_name \
and "_" in file_name and "Edited" not in file_name
]
files = sorted(files, key = lambda x: int(x.split("_")[0][4:]))
for idx, file_name in enumerate(files):
if "mask" in file_name and ".npy" in file_name and "_" in file_name \
and "Edited" not in file_name:
mask_np = np.load(os.path.join(input_folder, file_name)).astype(np_mask_dtype)
mask_np_list.append(mask_np)
mask_label = file_name.split("_")[1][:-4]
mask_label_list.append(mask_label)
mask_list = []
for mask_np in mask_np_list:
mask = torch.from_numpy(mask_np)
mask_list.append(mask)
try:
assert torch.all(sum(mask_list)==1)
except:
print("please check mask")
# plt.imsave( "out_mask.png", mask_list_edit[0])
import pdb; pdb.set_trace()
return mask_list, mask_label_list
def load_image(image_path, left=0, right=0, top=0, bottom=0, size = 512):
if type(image_path) is str:
image = np.array(Image.open(image_path))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w-1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h-bottom, left:w-right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((size, size)))
return image
def mask_union_torch(*masks):
masks = [m.to(torch.float) for m in masks]
res = sum(masks)>0
return res
def load_mask_edit(input_folder):
np_mask_dtype = 'uint8'
mask_np_list = []
mask_label_list = []
files = [file_name for file_name in os.listdir(input_folder) if "mask" in file_name and ".npy" in file_name and "_" in file_name and "Edited" in file_name and "-1" not in file_name]
files = sorted(files, key = lambda x: int(x.split("_")[0][10:]))
for idx, file_name in enumerate(files):
if "mask" in file_name and ".npy" in file_name and "_" in file_name and "Edited" in file_name and "-1" not in file_name:
mask_np = np.load(os.path.join(input_folder, file_name)).astype(np_mask_dtype)
mask_np_list.append(mask_np)
mask_label = file_name.split("_")[1][:-4]
# mask_label = mask_label.split("-")[0]
mask_label_list.append(mask_label)
mask_list = []
for mask_np in mask_np_list:
mask = torch.from_numpy(mask_np)
mask_list.append(mask)
try:
assert torch.all(sum(mask_list)==1)
except:
print("Make sure maskEdited is in the folder, if not, generate using the UI")
import pdb; pdb.set_trace()
return mask_list, mask_label_list
def save_images(images,filename, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
folder = os.path.dirname(filename)
for i, image in enumerate(images):
pil_img = Image.fromarray(image)
name = filename.split("/")[-1]
name = name.split(".")[-2]+"_{}".format(i) +"."+filename.split(".")[-1]
pil_img.save(os.path.join(folder, name))
print("saved to ", os.path.join(folder, name)) |