Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import re | |
import time | |
import torch | |
import spaces | |
#import subprocess | |
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct") | |
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct", | |
torch_dtype=torch.bfloat16, | |
#_attn_implementation="flash_attention_2" | |
).to("cuda") | |
def model_inference( | |
input_dict, history | |
): | |
text = input_dict["text"] | |
print(input_dict["files"]) | |
if len(input_dict["files"]) > 1: | |
images = [load_image(image) for image in input_dict["files"]] | |
elif len(input_dict["files"]) == 1: | |
images = [load_image(input_dict["files"][0])] | |
else: | |
images = [] | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
if text == "" and images: | |
gr.Error("Please input a text query along the image(s).") | |
resulting_messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "image"} for _ in range(len(images))] + [ | |
{"type": "text", "text": text} | |
] | |
} | |
] | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], return_tensors="pt") | |
inputs = inputs.to('cuda') | |
generation_args = { | |
"input_ids": inputs.input_ids, | |
"pixel_values": inputs.pixel_values, | |
"attention_mask": inputs.attention_mask, | |
"num_return_sequences": 1, | |
"no_repeat_ngram_size": 2, | |
"max_new_tokens": 500, | |
"min_new_tokens": 10, | |
} | |
# Generate | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=500) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
yield "..." | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer#[len(ext_buffer):] | |
time.sleep(0.01) | |
yield buffer | |
examples=[ | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}], | |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}], | |
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], | |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
] | |
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM-500M: The 2nd Smollest VLM ever 💫", | |
description="Play with [HuggingFaceTB/SmolVLM-500M-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-500M-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, | |
cache_examples=False | |
) | |
demo.launch(debug=True) | |