SDXL-Turbo / app.py
radames's picture
title
a492ba5
raw
history blame
7.11 kB
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image
import torch
import os
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
if SAFETY_CHECKER == "True":
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
else:
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/sdxl-turbo",
safety_checker=None,
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
safety_checker=None,
torch_dtype=torch_dtype,
variant="fp16" if torch_dtype == torch.float16 else "fp32",
)
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
t2i_pipe.set_progress_bar_config(disable=True)
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
i2i_pipe.set_progress_bar_config(disable=True)
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
async def predict(init_image, prompt, strength, steps, seed=1231231):
if init_image is not None:
init_image = pad_image(init_image).convert("RGB").resize((512, 512))
generator = torch.manual_seed(seed)
last_time = time.time()
results = i2i_pipe(
prompt=prompt,
image=init_image,
generator=generator,
num_inference_steps=steps,
guidance_scale=0.0,
strength=strength,
width=512,
height=512,
output_type="pil",
)
else:
generator = torch.manual_seed(seed)
last_time = time.time()
results = t2i_pipe(
prompt=prompt,
generator=generator,
num_inference_steps=steps,
guidance_scale=0.0,
width=512,
height=512,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
gr.Warning("NSFW content detected.")
return Image.new("RGB", (512, 512))
return results.images[0]
css = """
#container{
margin: 0 auto;
max-width: 80rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
init_image_state = gr.State()
with gr.Column(elem_id="container"):
gr.Markdown(
"""# SDXL Turbo Image to Image/Text to Image
## Unofficial Demo
SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo).
**Model**: https://huggingface.co/stabilityai/sdxl-turbo
""",
elem_id="intro",
)
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:",
scale=5,
container=False,
)
generate_bt = gr.Button("Generate", scale=1)
with gr.Row():
with gr.Column():
image_input = gr.Image(
sources=["upload", "webcam", "clipboard"],
label="Webcam",
type="pil",
)
with gr.Column():
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
strength = gr.Slider(
label="Strength",
value=0.7,
minimum=0.0,
maximum=1.0,
step=0.001,
)
steps = gr.Slider(
label="Steps", value=2, minimum=1, maximum=10, step=1
)
seed = gr.Slider(
randomize=True,
minimum=0,
maximum=12013012031030,
label="Seed",
step=1,
)
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running SDXL Turbo with `diffusers`
```bash
pip install diffusers==0.23.1
```
```py
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/sdxl-turbo"
).to("cuda")
results = pipe(
prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe",
num_inference_steps=1,
guidance_scale=0.0,
)
imga = results.images[0]
imga.save("image.png")
```
"""
)
inputs = [image_input, prompt, strength, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
image_input.change(
fn=lambda x: x,
inputs=image_input,
outputs=init_image_state,
show_progress=False,
queue=False,
)
demo.queue()
demo.launch()