Spaces:
Paused
Paused
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU | |
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0 | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX | |
logger = logging.get_logger(__name__) | |
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class JointTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
context_pre_only: bool = False, | |
qk_norm: Optional[str] = None, | |
use_dual_attention: bool = False, | |
): | |
super().__init__() | |
self.use_dual_attention = use_dual_attention | |
self.context_pre_only = context_pre_only | |
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" | |
if use_dual_attention: | |
self.norm1 = SD35AdaLayerNormZeroX(dim) | |
else: | |
self.norm1 = AdaLayerNormZero(dim) | |
if context_norm_type == "ada_norm_continous": | |
self.norm1_context = AdaLayerNormContinuous( | |
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" | |
) | |
elif context_norm_type == "ada_norm_zero": | |
self.norm1_context = AdaLayerNormZero(dim) | |
else: | |
raise ValueError( | |
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" | |
) | |
if hasattr(F, "scaled_dot_product_attention"): | |
processor = JointAttnProcessor2_0() | |
else: | |
raise ValueError( | |
"The current PyTorch version does not support the `scaled_dot_product_attention` function." | |
) | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=context_pre_only, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
if use_dual_attention: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
else: | |
self.attn2 = None | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
if not context_pre_only: | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
else: | |
self.norm2_context = None | |
self.ff_context = None | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, | |
joint_attention_kwargs=None, | |
): | |
if self.use_dual_attention: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1( | |
hidden_states, emb=temb | |
) | |
else: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
if self.context_pre_only: | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) | |
else: | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# Attention. | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, | |
**({} if joint_attention_kwargs is None else joint_attention_kwargs), | |
) | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
if self.use_dual_attention: | |
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **({} if joint_attention_kwargs is None else joint_attention_kwargs),) | |
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2 | |
hidden_states = hidden_states + attn_output2 | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
if self.context_pre_only: | |
encoder_hidden_states = None | |
else: | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
context_ff_output = _chunked_feed_forward( | |
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return encoder_hidden_states, hidden_states | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, | |
ada_norm_bias: Optional[int] = None, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
self.dim = dim | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
self.dropout = dropout | |
self.cross_attention_dim = cross_attention_dim | |
self.activation_fn = activation_fn | |
self.attention_bias = attention_bias | |
self.double_self_attention = double_self_attention | |
self.norm_elementwise_affine = norm_elementwise_affine | |
self.positional_embeddings = positional_embeddings | |
self.num_positional_embeddings = num_positional_embeddings | |
self.only_cross_attention = only_cross_attention | |
# We keep these boolean flags for backward-compatibility. | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
self.norm_type = norm_type | |
self.num_embeds_ada_norm = num_embeds_ada_norm | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if norm_type == "ada_norm": | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_zero": | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm1 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
if norm_type == "ada_norm": | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm2 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
if norm_type == "ada_norm_single": # For Latte | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if norm_type == "ada_norm_continuous": | |
self.norm3 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"layer_norm", | |
) | |
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: | |
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
elif norm_type == "layer_norm_i2vgen": | |
self.norm3 = None | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if norm_type == "ada_norm_single": | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.norm_type == "ada_norm_zero": | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif self.norm_type == "ada_norm_single": | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.norm_type == "ada_norm_zero": | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.norm_type == "ada_norm_single": | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.2 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.norm_type == "ada_norm_single": | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
# i2vgen doesn't have this norm 🤷♂️ | |
if self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif not self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.norm_type == "ada_norm_single": | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class LuminaFeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
hidden_size (`int`): | |
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's | |
hidden representations. | |
intermediate_size (`int`): The intermediate dimension of the feedforward layer. | |
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple | |
of this value. | |
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden | |
dimension. Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
inner_dim: int, | |
multiple_of: Optional[int] = 256, | |
ffn_dim_multiplier: Optional[float] = None, | |
): | |
super().__init__() | |
inner_dim = int(2 * inner_dim / 3) | |
# custom hidden_size factor multiplier | |
if ffn_dim_multiplier is not None: | |
inner_dim = int(ffn_dim_multiplier * inner_dim) | |
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of) | |
self.linear_1 = nn.Linear( | |
dim, | |
inner_dim, | |
bias=False, | |
) | |
self.linear_2 = nn.Linear( | |
inner_dim, | |
dim, | |
bias=False, | |
) | |
self.linear_3 = nn.Linear( | |
dim, | |
inner_dim, | |
bias=False, | |
) | |
self.silu = FP32SiLU() | |
def forward(self, x): | |
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x)) | |
class TemporalBasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block for video like data. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
time_mix_inner_dim (`int`): The number of channels for temporal attention. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
time_mix_inner_dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.is_res = dim == time_mix_inner_dim | |
self.norm_in = nn.LayerNorm(dim) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
self.ff_in = FeedForward( | |
dim, | |
dim_out=time_mix_inner_dim, | |
activation_fn="geglu", | |
) | |
self.norm1 = nn.LayerNorm(time_mix_inner_dim) | |
self.attn1 = Attention( | |
query_dim=time_mix_inner_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
cross_attention_dim=None, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = nn.LayerNorm(time_mix_inner_dim) | |
self.attn2 = Attention( | |
query_dim=time_mix_inner_dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(time_mix_inner_dim) | |
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = None | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off | |
self._chunk_dim = 1 | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
num_frames: int, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
batch_frames, seq_length, channels = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) | |
residual = hidden_states | |
hidden_states = self.norm_in(hidden_states) | |
if self._chunk_size is not None: | |
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
hidden_states = self.ff_in(hidden_states) | |
if self.is_res: | |
hidden_states = hidden_states + residual | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) | |
hidden_states = attn_output + hidden_states | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = self.norm2(hidden_states) | |
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self._chunk_size is not None: | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.is_res: | |
hidden_states = ff_output + hidden_states | |
else: | |
hidden_states = ff_output | |
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) | |
hidden_states = hidden_states.permute(0, 2, 1, 3) | |
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) | |
return hidden_states | |
class SkipFFTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
kv_input_dim: int, | |
kv_input_dim_proj_use_bias: bool, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
if kv_input_dim != dim: | |
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) | |
else: | |
self.kv_mapper = None | |
self.norm1 = RMSNorm(dim, 1e-06) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim, | |
out_bias=attention_out_bias, | |
) | |
self.norm2 = RMSNorm(dim, 1e-06) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
) | |
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
if self.kv_mapper is not None: | |
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
norm_hidden_states = self.norm2(hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
return hidden_states | |
class FreeNoiseTransformerBlock(nn.Module): | |
r""" | |
A FreeNoise Transformer block. | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): | |
The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
Activation function to be used in feed-forward. | |
num_embeds_ada_norm (`int`, *optional*): | |
The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (`bool`, defaults to `False`): | |
Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, defaults to `False`): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, defaults to `False`): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, defaults to `False`): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
ff_inner_dim (`int`, *optional*): | |
Hidden dimension of feed-forward MLP. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in feed-forward MLP. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in attention output project layer. | |
context_length (`int`, defaults to `16`): | |
The maximum number of frames that the FreeNoise block processes at once. | |
context_stride (`int`, defaults to `4`): | |
The number of frames to be skipped before starting to process a new batch of `context_length` frames. | |
weighting_scheme (`str`, defaults to `"pyramid"`): | |
The weighting scheme to use for weighting averaging of processed latent frames. As described in the | |
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting | |
used. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout: float = 0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
context_length: int = 16, | |
context_stride: int = 4, | |
weighting_scheme: str = "pyramid", | |
): | |
super().__init__() | |
self.dim = dim | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
self.dropout = dropout | |
self.cross_attention_dim = cross_attention_dim | |
self.activation_fn = activation_fn | |
self.attention_bias = attention_bias | |
self.double_self_attention = double_self_attention | |
self.norm_elementwise_affine = norm_elementwise_affine | |
self.positional_embeddings = positional_embeddings | |
self.num_positional_embeddings = num_positional_embeddings | |
self.only_cross_attention = only_cross_attention | |
self.set_free_noise_properties(context_length, context_stride, weighting_scheme) | |
# We keep these boolean flags for backward-compatibility. | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
self.norm_type = norm_type | |
self.num_embeds_ada_norm = num_embeds_ada_norm | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) # is self-attn if encoder_hidden_states is none | |
# 3. Feed-forward | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]: | |
frame_indices = [] | |
for i in range(0, num_frames - self.context_length + 1, self.context_stride): | |
window_start = i | |
window_end = min(num_frames, i + self.context_length) | |
frame_indices.append((window_start, window_end)) | |
return frame_indices | |
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]: | |
if weighting_scheme == "flat": | |
weights = [1.0] * num_frames | |
elif weighting_scheme == "pyramid": | |
if num_frames % 2 == 0: | |
# num_frames = 4 => [1, 2, 2, 1] | |
mid = num_frames // 2 | |
weights = list(range(1, mid + 1)) | |
weights = weights + weights[::-1] | |
else: | |
# num_frames = 5 => [1, 2, 3, 2, 1] | |
mid = (num_frames + 1) // 2 | |
weights = list(range(1, mid)) | |
weights = weights + [mid] + weights[::-1] | |
elif weighting_scheme == "delayed_reverse_sawtooth": | |
if num_frames % 2 == 0: | |
# num_frames = 4 => [0.01, 2, 2, 1] | |
mid = num_frames // 2 | |
weights = [0.01] * (mid - 1) + [mid] | |
weights = weights + list(range(mid, 0, -1)) | |
else: | |
# num_frames = 5 => [0.01, 0.01, 3, 2, 1] | |
mid = (num_frames + 1) // 2 | |
weights = [0.01] * mid | |
weights = weights + list(range(mid, 0, -1)) | |
else: | |
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}") | |
return weights | |
def set_free_noise_properties( | |
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid" | |
) -> None: | |
self.context_length = context_length | |
self.context_stride = context_stride | |
self.weighting_scheme = weighting_scheme | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None: | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
# hidden_states: [B x H x W, F, C] | |
device = hidden_states.device | |
dtype = hidden_states.dtype | |
num_frames = hidden_states.size(1) | |
frame_indices = self._get_frame_indices(num_frames) | |
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme) | |
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1) | |
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames | |
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length | |
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges: | |
# [(0, 16), (4, 20), (8, 24), (10, 26)] | |
if not is_last_frame_batch_complete: | |
if num_frames < self.context_length: | |
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}") | |
last_frame_batch_length = num_frames - frame_indices[-1][1] | |
frame_indices.append((num_frames - self.context_length, num_frames)) | |
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device) | |
accumulated_values = torch.zeros_like(hidden_states) | |
for i, (frame_start, frame_end) in enumerate(frame_indices): | |
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle | |
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or | |
# essentially a non-multiple of `context_length`. | |
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end]) | |
weights *= frame_weights | |
hidden_states_chunk = hidden_states[:, frame_start:frame_end] | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 1. Self-Attention | |
norm_hidden_states = self.norm1(hidden_states_chunk) | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states_chunk = attn_output + hidden_states_chunk | |
if hidden_states_chunk.ndim == 4: | |
hidden_states_chunk = hidden_states_chunk.squeeze(1) | |
# 2. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = self.norm2(hidden_states_chunk) | |
if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states_chunk = attn_output + hidden_states_chunk | |
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete: | |
accumulated_values[:, -last_frame_batch_length:] += ( | |
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:] | |
) | |
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length] | |
else: | |
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights | |
num_times_accumulated[:, frame_start:frame_end] += weights | |
# TODO(aryan): Maybe this could be done in a better way. | |
# | |
# Previously, this was: | |
# hidden_states = torch.where( | |
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values | |
# ) | |
# | |
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory | |
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes | |
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly | |
# looked into this deeply because other memory optimizations led to more pronounced reductions. | |
hidden_states = torch.cat( | |
[ | |
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split) | |
for accumulated_split, num_times_split in zip( | |
accumulated_values.split(self.context_length, dim=1), | |
num_times_accumulated.split(self.context_length, dim=1), | |
) | |
], | |
dim=1, | |
).to(dtype) | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self._chunk_size is not None: | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
elif activation_fn == "swiglu": | |
act_fn = SwiGLU(dim, inner_dim, bias=bias) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |