Spaces:
Sleeping
Sleeping
FoodDesert
commited on
Upload 2 files
Browse filesTrying to fix the mascot image again. Also uploading jupyter notebook used to construct the svd-reduced tf-idf matrix
- app.py +40 -5
- predict_all_tags_from_dump.ipynb +721 -0
app.py
CHANGED
@@ -22,8 +22,10 @@ import glob
|
|
22 |
import itertools
|
23 |
from itertools import islice
|
24 |
from pathlib import Path
|
25 |
-
|
26 |
|
|
|
|
|
27 |
|
28 |
|
29 |
faq_content="""
|
@@ -153,7 +155,7 @@ def extract_tags(tree):
|
|
153 |
return tags_with_positions
|
154 |
|
155 |
|
156 |
-
special_tags = ["score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"]
|
157 |
def remove_special_tags(original_string):
|
158 |
tags = [tag.strip() for tag in original_string.split(",")]
|
159 |
remaining_tags = [tag for tag in tags if tag not in special_tags]
|
@@ -713,9 +715,42 @@ with gr.Blocks(css=css) as app:
|
|
713 |
#gr.HTML('<div style="text-align: center;"><img src={image_path} alt="Cute Mascot" style="max-height: 100px; background: transparent;"></div><br>')
|
714 |
#gr.HTML("<br>" * 2) # Adjust the number of line breaks ("<br>") as needed to push the button down
|
715 |
#image_path = os.path.join('mascotimages', "transparentsquirrel.png")
|
716 |
-
random_image_path = os.path.join('mascotimages', random.choice([f for f in os.listdir('mascotimages') if os.path.isfile(os.path.join('mascotimages', f))]))
|
717 |
-
with Image.open(random_image_path) as img:
|
718 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
submit_button = gr.Button(variant="primary")
|
720 |
with gr.Row():
|
721 |
with gr.Column(scale=3):
|
|
|
22 |
import itertools
|
23 |
from itertools import islice
|
24 |
from pathlib import Path
|
25 |
+
import logging
|
26 |
|
27 |
+
# Set up logging
|
28 |
+
logging.basicConfig(filename='error.log', level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s')
|
29 |
|
30 |
|
31 |
faq_content="""
|
|
|
155 |
return tags_with_positions
|
156 |
|
157 |
|
158 |
+
special_tags = ["score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9", "rating:s", "rating:q", "rating:e"]
|
159 |
def remove_special_tags(original_string):
|
160 |
tags = [tag.strip() for tag in original_string.split(",")]
|
161 |
remaining_tags = [tag for tag in tags if tag not in special_tags]
|
|
|
715 |
#gr.HTML('<div style="text-align: center;"><img src={image_path} alt="Cute Mascot" style="max-height: 100px; background: transparent;"></div><br>')
|
716 |
#gr.HTML("<br>" * 2) # Adjust the number of line breaks ("<br>") as needed to push the button down
|
717 |
#image_path = os.path.join('mascotimages', "transparentsquirrel.png")
|
718 |
+
#random_image_path = os.path.join('mascotimages', random.choice([f for f in os.listdir('mascotimages') if os.path.isfile(os.path.join('mascotimages', f))]))
|
719 |
+
#with Image.open(random_image_path) as img:
|
720 |
+
# gr.Image(value=img,show_label=False, show_download_button=False, show_share_button=False, height=200)
|
721 |
+
|
722 |
+
|
723 |
+
|
724 |
+
|
725 |
+
|
726 |
+
try:
|
727 |
+
files = [f for f in os.listdir('mascotimages') if os.path.isfile(os.path.join('mascotimages', f))]
|
728 |
+
logging.debug(f"Mascot: Files in 'mascotimages': {files}") # Log the list of files found
|
729 |
+
|
730 |
+
if files:
|
731 |
+
random_image_path = os.path.join('mascotimages', random.choice(files))
|
732 |
+
logging.info(f"Mascot: random_image_path: {random_image_path}") # Log which file was chosen
|
733 |
+
|
734 |
+
# Open and display the image using Gradio
|
735 |
+
try:
|
736 |
+
with Image.open(random_image_path) as img:
|
737 |
+
logging.debug(f"Mascot: Opened image: {random_image_path}") # Confirm image is opened
|
738 |
+
gr.Image(value=img, show_label=False, show_download_button=False, show_share_button=False, height=200)
|
739 |
+
except Exception as e:
|
740 |
+
logging.error(f"Mascot: Failed to open or display the image: {e}") # Log if image fails to open or display
|
741 |
+
else:
|
742 |
+
logging.warning("Mascot: No files found in 'mascotimages' directory") # Log if no files are found
|
743 |
+
|
744 |
+
except Exception as e:
|
745 |
+
logging.error(f"Mascot: Error listing files in directory: {e}") # Log if there's an error listing the directory
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
+
|
751 |
+
|
752 |
+
|
753 |
+
|
754 |
submit_button = gr.Button(variant="primary")
|
755 |
with gr.Row():
|
756 |
with gr.Column(scale=3):
|
predict_all_tags_from_dump.ipynb
ADDED
@@ -0,0 +1,721 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "55c95870",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import csv\n",
|
11 |
+
"import gzip\n",
|
12 |
+
"from math import log\n",
|
13 |
+
"from collections import Counter\n",
|
14 |
+
"from sys import maxsize\n",
|
15 |
+
"import numpy as np\n",
|
16 |
+
"import joblib\n",
|
17 |
+
"from collections import OrderedDict\n",
|
18 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
19 |
+
"from collections import defaultdict\n",
|
20 |
+
"import sys\n",
|
21 |
+
"from scipy.sparse import dok_matrix\n",
|
22 |
+
"from sklearn.preprocessing import normalize\n",
|
23 |
+
"from sklearn.decomposition import TruncatedSVD\n",
|
24 |
+
"\n",
|
25 |
+
"\n",
|
26 |
+
"\n",
|
27 |
+
"posts_file = 'posts-2024-04-14.csv.gz'\n",
|
28 |
+
"fluffyrock_tags_list_file = 'fluffyrock_3m.csv'\n",
|
29 |
+
"\n",
|
30 |
+
"\n",
|
31 |
+
"def extract_artist_names(file_path):\n",
|
32 |
+
" \"\"\"\n",
|
33 |
+
" Extract artist names from a CSV file where each row contains tag information,\n",
|
34 |
+
" and the first column contains the tag's name. Artist tags start with 'by_'.\n",
|
35 |
+
"\n",
|
36 |
+
" :param file_path: Path to the CSV file\n",
|
37 |
+
" :return: A set containing artist names without the 'by_' prefix\n",
|
38 |
+
" \"\"\"\n",
|
39 |
+
" artists = set()\n",
|
40 |
+
"\n",
|
41 |
+
" # Open the CSV file and read it\n",
|
42 |
+
" with open(file_path, newline='', encoding='utf-8') as csvfile:\n",
|
43 |
+
" reader = csv.reader(csvfile)\n",
|
44 |
+
" \n",
|
45 |
+
" # Iterate over each row in the CSV file\n",
|
46 |
+
" for row in reader:\n",
|
47 |
+
" tag_name = row[0] # Assuming the first column contains the tag names\n",
|
48 |
+
" if tag_name.startswith('by_'):\n",
|
49 |
+
" # Strip 'by_' from the start of the tag name and add it to the set\n",
|
50 |
+
" artist_name = tag_name[3:] # Remove the first three characters 'by_'\n",
|
51 |
+
" artists.add(tag_name)\n",
|
52 |
+
"\n",
|
53 |
+
" return artists\n",
|
54 |
+
"\n",
|
55 |
+
"\n",
|
56 |
+
"def build_tag_list(tags, e621_rating_character, fav_count, artist_names):\n",
|
57 |
+
" results = []\n",
|
58 |
+
" \n",
|
59 |
+
" #score\n",
|
60 |
+
" score_value = min(1.0, (log(int(fav_count)+1) / 10))\n",
|
61 |
+
" rounded_score_value = round(score_value * 10)\n",
|
62 |
+
" results.append(f\"score: {rounded_score_value}\")\n",
|
63 |
+
" \n",
|
64 |
+
" #rating\n",
|
65 |
+
" results.append(\"rating:\" + e621_rating_character)\n",
|
66 |
+
" \n",
|
67 |
+
" #regular tags and artists\n",
|
68 |
+
" for tag in tags:\n",
|
69 |
+
" if tag in artist_names:\n",
|
70 |
+
" results.append(\"by_\" + tag)\n",
|
71 |
+
" else:\n",
|
72 |
+
" results.append(tag)\n",
|
73 |
+
" return results\n",
|
74 |
+
"\n",
|
75 |
+
"\n",
|
76 |
+
"def read_csv_as_dict(file_path):\n",
|
77 |
+
" \"\"\"\n",
|
78 |
+
" Generator function to read a gzipped CSV file and yield each row as a dictionary\n",
|
79 |
+
" where keys are the column names and values are the data in each column.\n",
|
80 |
+
"\n",
|
81 |
+
" :param file_path: Path to the .csv.gz file\n",
|
82 |
+
" \"\"\"\n",
|
83 |
+
" \n",
|
84 |
+
" #counter=0\n",
|
85 |
+
" with gzip.open(file_path, 'rt', newline='', encoding='utf-8') as gz_file:\n",
|
86 |
+
" csv.field_size_limit(1000000)\n",
|
87 |
+
" reader = csv.DictReader(gz_file)\n",
|
88 |
+
" for row in reader:\n",
|
89 |
+
" #counter += 1\n",
|
90 |
+
" #if counter % 100 == 0:\n",
|
91 |
+
" yield row\n",
|
92 |
+
" \n",
|
93 |
+
" \n",
|
94 |
+
"def process_tags_from_csv(file_path, artist_names):\n",
|
95 |
+
" \"\"\"\n",
|
96 |
+
" Generator function that reads rows from a CSV file, processes each row to extract and\n",
|
97 |
+
" build tag lists, and yields these lists one at a time.\n",
|
98 |
+
"\n",
|
99 |
+
" :param file_path: The path to the gzipped CSV file.\n",
|
100 |
+
" :param artist_names: A set containing all artist names for tag processing.\n",
|
101 |
+
" :return: Yields lists of tags for each row.\n",
|
102 |
+
" \"\"\"\n",
|
103 |
+
" for row in read_csv_as_dict(file_path):\n",
|
104 |
+
" base_tags = row['tag_string'].split(' ')\n",
|
105 |
+
" rating_character = row['rating']\n",
|
106 |
+
" fav_count = row['fav_count']\n",
|
107 |
+
" all_tags = build_tag_list(base_tags, rating_character, fav_count, artist_names)\n",
|
108 |
+
" yield all_tags\n",
|
109 |
+
" \n",
|
110 |
+
" \n",
|
111 |
+
"def construct_pseudo_vector(pseudo_doc_terms, idf_loaded, tag_to_column_loaded):\n",
|
112 |
+
" # Initialize a vector of zeros with the length of the term_to_index mapping\n",
|
113 |
+
" pseudo_vector = np.zeros(len(tag_to_column_loaded))\n",
|
114 |
+
" \n",
|
115 |
+
" # Fill in the vector for terms in the pseudo document\n",
|
116 |
+
" for term in pseudo_doc_terms:\n",
|
117 |
+
" if term in tag_to_column_loaded:\n",
|
118 |
+
" index = tag_to_column_loaded[term]\n",
|
119 |
+
" pseudo_vector[index] = idf_loaded.get(term, 0)\n",
|
120 |
+
" \n",
|
121 |
+
" # Return the vector as a 2D array for compatibility with SVD transform\n",
|
122 |
+
" return pseudo_vector.reshape(1, -1)"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"id": "0a9becfd",
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"all_artist_names = extract_artist_names(fluffyrock_tags_list_file)\n",
|
133 |
+
"\n",
|
134 |
+
"tag_count = Counter()\n",
|
135 |
+
"min_occurrences = 200\n",
|
136 |
+
" \n",
|
137 |
+
"for all_tags in process_tags_from_csv(posts_file, all_artist_names):\n",
|
138 |
+
" tag_count.update(all_tags)\n",
|
139 |
+
" \n",
|
140 |
+
"\n",
|
141 |
+
"# Apply the counting logic from the first code snippet\n",
|
142 |
+
"sorted_tags = tag_count.most_common()\n",
|
143 |
+
"filtered_tags = [tag for tag, count in sorted_tags if count >= min_occurrences]\n",
|
144 |
+
"\n",
|
145 |
+
"# Print tag counts before and after filtering\n",
|
146 |
+
"print(\"Tag count before filtering: \", len(tag_count))\n",
|
147 |
+
"print(\"Tag count after filtering: \", len(filtered_tags))"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"id": "56f8d7cd",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"# Initialize a dictionary to hold the co-occurrences for each tag in filtered_tags\n",
|
158 |
+
"# Using a nested defaultdict for automatic handling of missing keys\n",
|
159 |
+
"pseudo_docs = defaultdict(lambda: defaultdict(int))\n",
|
160 |
+
"\n",
|
161 |
+
"# Number of tags processed\n",
|
162 |
+
"total_rows_processed = 0\n",
|
163 |
+
"\n",
|
164 |
+
"# Read each row and process the tags\n",
|
165 |
+
"for all_tags in process_tags_from_csv(posts_file, all_artist_names):\n",
|
166 |
+
" # Filter the tags in the current list to include only those in filtered_tags\n",
|
167 |
+
" filtered_tag_list = [tag for tag in all_tags if tag in filtered_tags]\n",
|
168 |
+
" \n",
|
169 |
+
" # For each tag in the filtered list\n",
|
170 |
+
" for tag in filtered_tag_list:\n",
|
171 |
+
" # For each co-occurring tag in the same list\n",
|
172 |
+
" for co_occur_tag in filtered_tag_list:\n",
|
173 |
+
" if co_occur_tag != tag:\n",
|
174 |
+
" pseudo_docs[tag][co_occur_tag] += 1\n",
|
175 |
+
"\n",
|
176 |
+
" # Counting total tags processed for progress monitoring\n",
|
177 |
+
" total_rows_processed += 1\n",
|
178 |
+
" if total_rows_processed % 10000 == 0:\n",
|
179 |
+
" print(f\"Processed {total_rows_processed} rows\", file=sys.stderr)\n",
|
180 |
+
"\n",
|
181 |
+
"print(\"Processing complete.\")\n"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": null,
|
187 |
+
"id": "b1d011a5",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"# Number of pseudo-documents\n",
|
192 |
+
"N = len(pseudo_docs)\n",
|
193 |
+
"\n",
|
194 |
+
"# Calculate TF and DF\n",
|
195 |
+
"tf = {}\n",
|
196 |
+
"df = {}\n",
|
197 |
+
"for doc, terms in pseudo_docs.items():\n",
|
198 |
+
" tf[doc] = {}\n",
|
199 |
+
" total_terms = sum(terms.values())\n",
|
200 |
+
" for term, count in terms.items():\n",
|
201 |
+
" tf[doc][term] = count / total_terms # Term Frequency\n",
|
202 |
+
" df[term] = df.get(term, 0) + 1 # Document Frequency\n",
|
203 |
+
" \n",
|
204 |
+
"# Ensure all terms are indexed\n",
|
205 |
+
"all_terms = set(df.keys())\n",
|
206 |
+
"term_to_column_index = {term: idx for idx, term in enumerate(all_terms)}\n",
|
207 |
+
"\n",
|
208 |
+
"# Calculate IDF\n",
|
209 |
+
"idf = {term: log((N + 1) / (df_val + 1)) for term, df_val in df.items()} # Adding 1 to prevent division by zero\n",
|
210 |
+
"\n",
|
211 |
+
"# Initialize the TF-IDF matrix\n",
|
212 |
+
"tfidf_matrix = dok_matrix((N, len(df)), dtype=float)\n",
|
213 |
+
"\n",
|
214 |
+
"# Mapping of tags to matrix rows\n",
|
215 |
+
"tag_to_row = {tag: idx for idx, tag in enumerate(pseudo_docs)}\n",
|
216 |
+
"\n",
|
217 |
+
"# Compute TF-IDF and fill the matrix\n",
|
218 |
+
"for doc, terms in tf.items():\n",
|
219 |
+
" row_idx = tag_to_row[doc]\n",
|
220 |
+
" for term, tf_val in terms.items():\n",
|
221 |
+
" col_idx = term_to_column_index[term] # Use term_to_index for column indexing\n",
|
222 |
+
" tfidf_matrix[row_idx, col_idx] = tf_val * idf[term]\n",
|
223 |
+
"\n",
|
224 |
+
"# Convert to CSR format for efficient row slicing\n",
|
225 |
+
"tfidf_matrix = tfidf_matrix.tocsr()\n",
|
226 |
+
"\n",
|
227 |
+
"print(\"TF-IDF matrix shape:\", tfidf_matrix.shape)\n"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": null,
|
233 |
+
"id": "b098a5fb",
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"# Choose the number of components for the reduced dimensionality\n",
|
238 |
+
"n_components = 300 # For example, reducing to 300 dimensions\n",
|
239 |
+
"\n",
|
240 |
+
"# Initialize the TruncatedSVD object\n",
|
241 |
+
"svd = TruncatedSVD(n_components=n_components, random_state=42)\n",
|
242 |
+
"\n",
|
243 |
+
"# Fit and transform the TF-IDF matrix\n",
|
244 |
+
"reduced_matrix = svd.fit_transform(tfidf_matrix)\n",
|
245 |
+
"\n",
|
246 |
+
"# 'reduced_matrix' now has a shape of (8500, n_components), e.g., (8500, 300)"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": null,
|
252 |
+
"id": "023ae26f",
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [],
|
255 |
+
"source": []
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": null,
|
260 |
+
"id": "06ec21c4",
|
261 |
+
"metadata": {},
|
262 |
+
"outputs": [],
|
263 |
+
"source": [
|
264 |
+
"# Step 1: Construct TF vector for the pseudo-document\n",
|
265 |
+
"pseudo_doc_terms = [\"female\"]\n",
|
266 |
+
"pseudo_tfidf_vector = construct_pseudo_vector(pseudo_doc_terms, idf, term_to_column_index)\n",
|
267 |
+
"\n",
|
268 |
+
"# Assuming 'tfidf_matrix' is your original TF-IDF matrix and 'reduced_matrix' is obtained from Truncated SVD\n",
|
269 |
+
"# 'pseudo_tfidf_vector' is the TF-IDF vector for your pseudo-document, constructed as previously discussed\n",
|
270 |
+
"\n",
|
271 |
+
"# For the original TF-IDF matrix\n",
|
272 |
+
"# Compute cosine similarities\n",
|
273 |
+
"cosine_similarities_full = cosine_similarity(pseudo_tfidf_vector, tfidf_matrix).flatten()\n",
|
274 |
+
"print(\"Cosine similarities (full matrix):\", cosine_similarities_full)\n",
|
275 |
+
"# Identify the indices of the top 10 most similar tags\n",
|
276 |
+
"top_indices_full = np.argsort(cosine_similarities_full)[-10:][::-1]\n",
|
277 |
+
"\n",
|
278 |
+
"# For the reduced matrix\n",
|
279 |
+
"# Reduce the dimensionality of the pseudo-document vector\n",
|
280 |
+
"# Before calculating similarities, print the TF-IDF vectors\n",
|
281 |
+
"print(\"Pseudo TF-IDF vector:\", pseudo_tfidf_vector)\n",
|
282 |
+
"reduced_pseudo_vector = svd.transform(pseudo_tfidf_vector)\n",
|
283 |
+
"print(\"Reduced pseudo-document vector:\", reduced_pseudo_vector)\n",
|
284 |
+
"\n",
|
285 |
+
"# Compute cosine similarities in the reduced space\n",
|
286 |
+
"cosine_similarities_reduced = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()\n",
|
287 |
+
"print(\"Cosine similarities (reduced matrix):\", cosine_similarities_reduced)\n",
|
288 |
+
"\n",
|
289 |
+
"\n",
|
290 |
+
"# Identify the indices of the top 10 most similar tags in the reduced space, sorted from most to least similar\n",
|
291 |
+
"top_indices_reduced = np.argsort(cosine_similarities_reduced)[-10:][::-1]\n",
|
292 |
+
"\n",
|
293 |
+
"\n",
|
294 |
+
"# Convert indices to tag names using the inverse of your 'tag_to_row' mapping\n",
|
295 |
+
"# Printing the tag to index and index to tag mappings\n",
|
296 |
+
"print(\"tag_to_row mapping (partial):\", dict(list(tag_to_row.items())[:12])) # Print only first 10 for brevity\n",
|
297 |
+
"row_to_tag = {idx: tag for tag, idx in tag_to_row.items()}\n",
|
298 |
+
"print(\"row_to_tag mapping (partial):\", dict(list(row_to_tag.items())[:12]))\n",
|
299 |
+
"\n",
|
300 |
+
"# Generate lists of tags with their corresponding similarity scores\n",
|
301 |
+
"top_tags_full = [(row_to_tag[idx], cosine_similarities_full[idx]) for idx in top_indices_full]\n",
|
302 |
+
"top_tags_reduced = [(row_to_tag[idx], cosine_similarities_reduced[idx]) for idx in top_indices_reduced]\n",
|
303 |
+
"\n",
|
304 |
+
"# Output the results with scores\n",
|
305 |
+
"print(\"Most similar tags (Full Matrix):\")\n",
|
306 |
+
"for tag, score in top_tags_full:\n",
|
307 |
+
" print(f\"{tag}: {score:.4f}\")\n",
|
308 |
+
"\n",
|
309 |
+
"print(\"Most similar tags (Reduced Matrix):\")\n",
|
310 |
+
"for tag, score in top_tags_reduced:\n",
|
311 |
+
" print(f\"{tag}: {score:.4f}\")\n"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": null,
|
317 |
+
"id": "91753fa3",
|
318 |
+
"metadata": {},
|
319 |
+
"outputs": [],
|
320 |
+
"source": [
|
321 |
+
"#Save the model to a file\n",
|
322 |
+
"\n",
|
323 |
+
"# Package necessary components\n",
|
324 |
+
"components_to_save = {\n",
|
325 |
+
" 'idf': idf,\n",
|
326 |
+
" 'tag_to_column_index': term_to_column_index,\n",
|
327 |
+
" 'row_to_tag': row_to_tag, \n",
|
328 |
+
" 'reduced_matrix': reduced_matrix,\n",
|
329 |
+
" 'svd_model': svd\n",
|
330 |
+
"}\n",
|
331 |
+
"\n",
|
332 |
+
"# Save the components into a file\n",
|
333 |
+
"joblib.dump(components_to_save, 'components_file418.joblib')"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "code",
|
338 |
+
"execution_count": null,
|
339 |
+
"id": "2e08dc1a",
|
340 |
+
"metadata": {},
|
341 |
+
"outputs": [],
|
342 |
+
"source": []
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": 3,
|
347 |
+
"id": "d066db2f",
|
348 |
+
"metadata": {},
|
349 |
+
"outputs": [
|
350 |
+
{
|
351 |
+
"name": "stdout",
|
352 |
+
"output_type": "stream",
|
353 |
+
"text": [
|
354 |
+
"Most similar tags (Reduced Matrix):\n",
|
355 |
+
"nameless_(arbuzbudesh): 0.0000\n",
|
356 |
+
"knotted_dildo: 0.0000\n",
|
357 |
+
"black_legs: 0.0000\n",
|
358 |
+
"disguise: 0.0000\n",
|
359 |
+
"lineup: 0.0000\n",
|
360 |
+
"olympics: 0.0000\n",
|
361 |
+
"burping: 0.0000\n",
|
362 |
+
"pink_collar: 0.0000\n",
|
363 |
+
"team_rocket: 0.0000\n",
|
364 |
+
"studded_bracelet: 0.0000\n"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"source": [
|
369 |
+
"#Reload and test file\n",
|
370 |
+
"\n",
|
371 |
+
"# Load the saved components from the joblib file\n",
|
372 |
+
"components = joblib.load('tf_idf_files_418_updated.joblib')\n",
|
373 |
+
"\n",
|
374 |
+
"# Extract necessary components\n",
|
375 |
+
"idf = components['idf']\n",
|
376 |
+
"term_to_column_index = components['tag_to_column_index']\n",
|
377 |
+
"row_to_tag = components['row_to_tag']\n",
|
378 |
+
"reduced_matrix = components['reduced_matrix']\n",
|
379 |
+
"svd = components['svd_model']\n",
|
380 |
+
"\n",
|
381 |
+
"# Construct the TF-IDF vector for \"domestic_dog\"\n",
|
382 |
+
"pseudo_tfidf_vector = construct_pseudo_vector(\"blue_(jurassic_world)\", idf, term_to_column_index)\n",
|
383 |
+
"\n",
|
384 |
+
"# Reduce the dimensionality of the pseudo-document vector for the reduced matrix\n",
|
385 |
+
"reduced_pseudo_vector = svd.transform(pseudo_tfidf_vector)\n",
|
386 |
+
"\n",
|
387 |
+
"# Compute cosine similarities in the reduced space\n",
|
388 |
+
"cosine_similarities_reduced = cosine_similarity(reduced_pseudo_vector, reduced_matrix).flatten()\n",
|
389 |
+
"\n",
|
390 |
+
"# Sort the indices by descending cosine similarity\n",
|
391 |
+
"top_indices_reduced = np.argsort(cosine_similarities_reduced)[::-1][:10]\n",
|
392 |
+
"\n",
|
393 |
+
"# Display the most similar tags in the reduced matrix with their scores\n",
|
394 |
+
"print(\"Most similar tags (Reduced Matrix):\")\n",
|
395 |
+
"for idx in top_indices_reduced:\n",
|
396 |
+
" tag = row_to_tag[idx]\n",
|
397 |
+
" score = cosine_similarities_reduced[idx]\n",
|
398 |
+
" print(f\"{tag}: {score:.4f}\")\n"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"cell_type": "code",
|
403 |
+
"execution_count": null,
|
404 |
+
"id": "ddea5f32",
|
405 |
+
"metadata": {},
|
406 |
+
"outputs": [],
|
407 |
+
"source": []
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"execution_count": null,
|
412 |
+
"id": "74897a5c",
|
413 |
+
"metadata": {},
|
414 |
+
"outputs": [],
|
415 |
+
"source": []
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": null,
|
420 |
+
"id": "c0c5b32d",
|
421 |
+
"metadata": {},
|
422 |
+
"outputs": [],
|
423 |
+
"source": []
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "code",
|
427 |
+
"execution_count": null,
|
428 |
+
"id": "9ff9a331",
|
429 |
+
"metadata": {},
|
430 |
+
"outputs": [],
|
431 |
+
"source": []
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": null,
|
436 |
+
"id": "91c66b57",
|
437 |
+
"metadata": {},
|
438 |
+
"outputs": [],
|
439 |
+
"source": []
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "code",
|
443 |
+
"execution_count": null,
|
444 |
+
"id": "a830c6cf",
|
445 |
+
"metadata": {},
|
446 |
+
"outputs": [],
|
447 |
+
"source": []
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": null,
|
452 |
+
"id": "4cdc98f0",
|
453 |
+
"metadata": {},
|
454 |
+
"outputs": [],
|
455 |
+
"source": []
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"cell_type": "code",
|
459 |
+
"execution_count": null,
|
460 |
+
"id": "150d66f3",
|
461 |
+
"metadata": {},
|
462 |
+
"outputs": [],
|
463 |
+
"source": []
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": null,
|
468 |
+
"id": "337b1f65",
|
469 |
+
"metadata": {},
|
470 |
+
"outputs": [],
|
471 |
+
"source": []
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": null,
|
476 |
+
"id": "34d2fde1",
|
477 |
+
"metadata": {},
|
478 |
+
"outputs": [],
|
479 |
+
"source": []
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
+
"id": "9fc197d8",
|
485 |
+
"metadata": {},
|
486 |
+
"outputs": [],
|
487 |
+
"source": []
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"cell_type": "code",
|
491 |
+
"execution_count": null,
|
492 |
+
"id": "bfa9c299",
|
493 |
+
"metadata": {},
|
494 |
+
"outputs": [],
|
495 |
+
"source": []
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"cell_type": "code",
|
499 |
+
"execution_count": null,
|
500 |
+
"id": "551a8453",
|
501 |
+
"metadata": {},
|
502 |
+
"outputs": [],
|
503 |
+
"source": []
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": null,
|
508 |
+
"id": "0dcdeb9e",
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [],
|
511 |
+
"source": []
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": null,
|
516 |
+
"id": "537c9e26",
|
517 |
+
"metadata": {},
|
518 |
+
"outputs": [],
|
519 |
+
"source": []
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "code",
|
523 |
+
"execution_count": null,
|
524 |
+
"id": "aa873abf",
|
525 |
+
"metadata": {},
|
526 |
+
"outputs": [],
|
527 |
+
"source": []
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"cell_type": "code",
|
531 |
+
"execution_count": null,
|
532 |
+
"id": "41aca76f",
|
533 |
+
"metadata": {},
|
534 |
+
"outputs": [],
|
535 |
+
"source": []
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "code",
|
539 |
+
"execution_count": null,
|
540 |
+
"id": "36a3ae96",
|
541 |
+
"metadata": {},
|
542 |
+
"outputs": [],
|
543 |
+
"source": []
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"cell_type": "code",
|
547 |
+
"execution_count": null,
|
548 |
+
"id": "fb59bac3",
|
549 |
+
"metadata": {},
|
550 |
+
"outputs": [],
|
551 |
+
"source": []
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"cell_type": "code",
|
555 |
+
"execution_count": null,
|
556 |
+
"id": "39c87db9",
|
557 |
+
"metadata": {},
|
558 |
+
"outputs": [],
|
559 |
+
"source": []
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"cell_type": "code",
|
563 |
+
"execution_count": null,
|
564 |
+
"id": "1646e731",
|
565 |
+
"metadata": {},
|
566 |
+
"outputs": [],
|
567 |
+
"source": []
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "code",
|
571 |
+
"execution_count": null,
|
572 |
+
"id": "99f95d09",
|
573 |
+
"metadata": {},
|
574 |
+
"outputs": [],
|
575 |
+
"source": []
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"cell_type": "code",
|
579 |
+
"execution_count": null,
|
580 |
+
"id": "9d6a67c2",
|
581 |
+
"metadata": {},
|
582 |
+
"outputs": [],
|
583 |
+
"source": []
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": null,
|
588 |
+
"id": "32acbfd7",
|
589 |
+
"metadata": {},
|
590 |
+
"outputs": [],
|
591 |
+
"source": []
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"cell_type": "code",
|
595 |
+
"execution_count": null,
|
596 |
+
"id": "3c17cd42",
|
597 |
+
"metadata": {},
|
598 |
+
"outputs": [],
|
599 |
+
"source": []
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"cell_type": "code",
|
603 |
+
"execution_count": null,
|
604 |
+
"id": "d333776c",
|
605 |
+
"metadata": {},
|
606 |
+
"outputs": [],
|
607 |
+
"source": []
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"cell_type": "code",
|
611 |
+
"execution_count": null,
|
612 |
+
"id": "1e8c7511",
|
613 |
+
"metadata": {},
|
614 |
+
"outputs": [],
|
615 |
+
"source": []
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"cell_type": "code",
|
619 |
+
"execution_count": null,
|
620 |
+
"id": "acf35591",
|
621 |
+
"metadata": {},
|
622 |
+
"outputs": [],
|
623 |
+
"source": []
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"cell_type": "code",
|
627 |
+
"execution_count": null,
|
628 |
+
"id": "101fb083",
|
629 |
+
"metadata": {},
|
630 |
+
"outputs": [],
|
631 |
+
"source": []
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"cell_type": "code",
|
635 |
+
"execution_count": null,
|
636 |
+
"id": "f8bd8551",
|
637 |
+
"metadata": {},
|
638 |
+
"outputs": [],
|
639 |
+
"source": []
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"cell_type": "code",
|
643 |
+
"execution_count": null,
|
644 |
+
"id": "271b9c12",
|
645 |
+
"metadata": {},
|
646 |
+
"outputs": [],
|
647 |
+
"source": []
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"cell_type": "code",
|
651 |
+
"execution_count": null,
|
652 |
+
"id": "a232e088",
|
653 |
+
"metadata": {},
|
654 |
+
"outputs": [],
|
655 |
+
"source": []
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"cell_type": "code",
|
659 |
+
"execution_count": null,
|
660 |
+
"id": "43df0240",
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [],
|
663 |
+
"source": []
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"execution_count": null,
|
668 |
+
"id": "8dbb05e8",
|
669 |
+
"metadata": {},
|
670 |
+
"outputs": [],
|
671 |
+
"source": [
|
672 |
+
"\n"
|
673 |
+
]
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"cell_type": "code",
|
677 |
+
"execution_count": null,
|
678 |
+
"id": "9730cb16",
|
679 |
+
"metadata": {},
|
680 |
+
"outputs": [],
|
681 |
+
"source": []
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"cell_type": "code",
|
685 |
+
"execution_count": null,
|
686 |
+
"id": "d38f92b2",
|
687 |
+
"metadata": {},
|
688 |
+
"outputs": [],
|
689 |
+
"source": []
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"cell_type": "code",
|
693 |
+
"execution_count": null,
|
694 |
+
"id": "879f5463",
|
695 |
+
"metadata": {},
|
696 |
+
"outputs": [],
|
697 |
+
"source": []
|
698 |
+
}
|
699 |
+
],
|
700 |
+
"metadata": {
|
701 |
+
"kernelspec": {
|
702 |
+
"display_name": "Python 3 (ipykernel)",
|
703 |
+
"language": "python",
|
704 |
+
"name": "python3"
|
705 |
+
},
|
706 |
+
"language_info": {
|
707 |
+
"codemirror_mode": {
|
708 |
+
"name": "ipython",
|
709 |
+
"version": 3
|
710 |
+
},
|
711 |
+
"file_extension": ".py",
|
712 |
+
"mimetype": "text/x-python",
|
713 |
+
"name": "python",
|
714 |
+
"nbconvert_exporter": "python",
|
715 |
+
"pygments_lexer": "ipython3",
|
716 |
+
"version": "3.10.9"
|
717 |
+
}
|
718 |
+
},
|
719 |
+
"nbformat": 4,
|
720 |
+
"nbformat_minor": 5
|
721 |
+
}
|