Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
from joblib import load | |
import h5py | |
from io import BytesIO | |
import csv | |
import re | |
import random | |
import compress_fasttext | |
from collections import OrderedDict | |
from lark import Lark | |
from lark import Token | |
faq_content=""" | |
# Frequently Asked Questions (FAQs) | |
Technically I am writing this before anyone but me has used the tool, so no one has asked questions yet. But if they did, here are the questions I think they might ask: | |
## Does input order matter? | |
No | |
## Should I use underscores in the input tags? | |
It doesn't matter. The application handles tags either way. | |
## Why are some valid tags marked as "unseen", and why don't some artists ever get returned? | |
Some data is excluded from consideration if it did not occur frequently enough in the sample from which the application makes its calculations. | |
If an artist or tag is too infrequent, we might not think we have enough data to make predictions about it. | |
## Are there any special tags? | |
Yes. We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest. | |
You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9" | |
in your list to bias the output toward artists with higher or lower scoring images. | |
## Are there any other special tricks? | |
Yes. If you want to more strongly bias the artist output toward a specific tag, you can just list it multiple times. | |
So for example, the query "red fox, red fox, red fox, score:7" will yield a list of artists who are more strongly associated with the tag "red fox" | |
than the query "red fox, score:7". | |
## What calculation is this thing actually performing? | |
Each artist is represented by a "pseudo-document" composed of all the tags from their uploaded images, treating these tags similarly to words in a text document. | |
Similarly, when you input a set of tags, the system creates a pseudo-document for your query out of all the tags. | |
It then uses a technique called cosine similarity to compare your tags against each artist's collection, essentially finding which artist's tags are most "similar" to yours. | |
This method helps identify artists whose work is closely aligned with the themes or elements you're interested in. | |
For those curious about the underlying mechanics of comparing text-like data, we employ the TF-IDF (Term Frequency-Inverse Document Frequency) method, a standard approach in information retrieval. | |
You can read more about TF-IDF on its [Wikipedia page](https://en.wikipedia.org/wiki/Tf%E2%80%93idf). | |
""" | |
grammar=r""" | |
!start: (prompt | /[][():]/+)* | |
prompt: (emphasized | plain | comma | WHITESPACE)* | |
!emphasized: "(" prompt ")" | |
| "(" prompt ":" [WHITESPACE] NUMBER [WHITESPACE] ")" | |
comma: "," | |
WHITESPACE: /\s+/ | |
plain: /([^,\\\[\]():|]|\\.)+/ | |
%import common.SIGNED_NUMBER -> NUMBER | |
""" | |
# Initialize the parser | |
parser = Lark(grammar, start='start') | |
# Function to extract tags | |
def extract_tags(tree): | |
tags = [] | |
def _traverse(node): | |
if isinstance(node, Token) and node.type == '__ANON_1': | |
tags.append(node.value.strip()) | |
elif not isinstance(node, Token): | |
for child in node.children: | |
_traverse(child) | |
_traverse(tree) | |
return tags | |
# Load the model and data once at startup | |
with h5py.File('complete_artist_data.hdf5', 'r') as f: | |
# Deserialize the vectorizer | |
vectorizer_bytes = f['vectorizer'][()].tobytes() | |
vectorizer_buffer = BytesIO(vectorizer_bytes) | |
vectorizer = load(vectorizer_buffer) | |
# Load X_artist | |
X_artist = f['X_artist'][:] | |
# Load artist names and decode to strings | |
artist_names = [name.decode() for name in f['artist_names'][:]] | |
def clean_tag(tag): | |
return ''.join(char for char in tag if ord(char) < 128) | |
#Normally returns tag to aliases, but when reverse=True, returns alias to tags | |
def build_aliases_dict(filename, reverse=False): | |
aliases_dict = {} | |
with open(filename, 'r', newline='', encoding='utf-8') as csvfile: | |
reader = csv.reader(csvfile) | |
for row in reader: | |
tag = clean_tag(row[0]) | |
alias_list = [] if row[3] == "null" else [clean_tag(alias) for alias in row[3].split(',')] | |
if reverse: | |
for alias in alias_list: | |
aliases_dict.setdefault(alias, []).append(tag) | |
else: | |
aliases_dict[tag] = alias_list | |
return aliases_dict | |
def find_similar_tags(test_tags): | |
#Initialize stuff | |
if not hasattr(find_similar_tags, "fasttext_small_model"): | |
find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin') | |
tag_aliases_file = 'fluffyrock_3m.csv' | |
if not hasattr(find_similar_tags, "tag2aliases"): | |
find_similar_tags.tag2aliases = build_aliases_dict(tag_aliases_file) | |
if not hasattr(find_similar_tags, "alias2tags"): | |
find_similar_tags.alias2tags = build_aliases_dict(tag_aliases_file, reverse=True) | |
# Find similar tags and prepare data for dataframe. | |
results_data = [] | |
for tag in test_tags: | |
modified_tag_for_search = tag.replace(' ','_') | |
similar_words = find_similar_tags.fasttext_small_model.most_similar(modified_tag_for_search) | |
result, seen = [], set() | |
if modified_tag_for_search in find_similar_tags.tag2aliases: | |
if tag in find_similar_tags.tag2aliases and "_" in tag: #Implicitly tell the user that they should get rid of the underscore | |
result.append(modified_tag_for_search.replace('_',' '), 1) | |
seen.add(tag) | |
else: #The user correctly did not put underscores in their tag | |
continue | |
else: | |
for item in similar_words: | |
similar_word, similarity = item | |
if similar_word not in seen: | |
if similar_word in find_similar_tags.tag2aliases: | |
result.append((similar_word.replace('_', ' '), round(similarity, 3))) | |
seen.add(similar_word) | |
else: | |
for similar_tag in find_similar_tags.alias2tags.get(similar_word, []): | |
if similar_tag not in seen: | |
result.append((similar_tag.replace('_', ' '), round(similarity, 3))) | |
seen.add(similar_tag) | |
# Append tag and formatted similar tags to results_data | |
first_entry_for_tag = True | |
for word, sim in result: | |
if first_entry_for_tag: | |
results_data.append([tag, word, sim]) | |
first_entry_for_tag = False | |
else: | |
results_data.append(["", word, sim]) | |
results_data.append(["", "", ""]) # Adds a blank line after each group of tags | |
if not results_data: | |
results_data.append(["No Unknown Tags Found", "", ""]) | |
return results_data # Return list of lists for Dataframe | |
def find_similar_artists(new_tags_string, top_n): | |
# Parse the prompt | |
parsed = parser.parse(new_tags_string) | |
# Extract tags from the parsed tree | |
new_image_tags = extract_tags(parsed) | |
new_image_tags = [tag.replace('_', ' ').strip() for tag in new_image_tags] | |
###unseen_tags = list(set(OrderedDict.fromkeys(new_image_tags)) - set(vectorizer.vocabulary_.keys())) | |
unseen_tags_data = find_similar_tags(new_image_tags) | |
X_new_image = vectorizer.transform([','.join(new_image_tags)]) | |
similarities = cosine_similarity(X_new_image, X_artist)[0] | |
top_artist_indices = np.argsort(similarities)[-top_n:][::-1] | |
top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices] | |
top_artists_str = "\n".join([f"{rank+1}. {artist[3:]} ({score:.4f})" for rank, (artist, score) in enumerate(top_artists)]) | |
dynamic_prompts_formatted_artists = "{" + "|".join([artist for artist, _ in top_artists]) + "}" | |
return unseen_tags_data, top_artists_str, dynamic_prompts_formatted_artists | |
iface = gr.Interface( | |
fn=find_similar_artists, | |
inputs=[ | |
gr.Textbox(label="Enter image tags", placeholder="e.g. fox, outside, detailed background, ..."), | |
gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists") | |
], | |
outputs=[ | |
gr.Dataframe(label="Unseen Tags", headers=["Tag", "Similar Tags", "Similarity"]), | |
gr.Textbox(label="Top Artists", info="These are the artists most strongly associated with your tags. The number in parenthes is a similarity score between 0 and 1, with higher numbers indicating greater similarity."), | |
gr.Textbox(label="Dynamic Prompts Format", info="For if you're using the Automatic1111 webui (https://github.com/AUTOMATIC1111/stable-diffusion-webui) with the Dynamic Prompts extension activated (https://github.com/adieyal/sd-dynamic-prompts) and want to try them all individually.") | |
], | |
title="Tagset Completer", | |
description="Enter a list of comma-separated e6 tags", | |
article=faq_content | |
) | |
iface.launch() | |