File size: 9,245 Bytes
a509ff9
 
 
 
 
a33aa9b
0e02b5f
 
 
 
 
a077145
 
 
a33aa9b
a509ff9
d96b2be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a077145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a509ff9
7dc19f7
a509ff9
 
 
 
 
 
 
 
 
 
0e02b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a077145
 
0e02b5f
a077145
 
 
 
 
 
 
0e02b5f
 
 
 
 
 
 
 
 
 
 
 
075d09e
0e02b5f
075d09e
0e02b5f
075d09e
 
 
 
 
 
 
a077145
 
0e02b5f
 
a509ff9
5792300
a077145
 
 
 
 
 
 
 
0e02b5f
a509ff9
 
 
 
 
 
456433b
 
a509ff9
0e02b5f
 
a509ff9
 
 
5792300
456433b
58f8528
5792300
456433b
6ec6a41
456433b
 
 
5792300
d96b2be
 
a509ff9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from joblib import load
import h5py
from io import BytesIO
import csv
import re
import random
import compress_fasttext
from collections import OrderedDict
from lark import Lark
from lark import Token



faq_content="""
# Frequently Asked Questions (FAQs)

Technically I am writing this before anyone but me has used the tool, so no one has asked questions yet.  But if they did, here are the questions I think they might ask:

## Does input order matter?

No

## Should I use underscores in the input tags?

It doesn't matter.  The application handles tags either way.

## Why are some valid tags marked as "unseen", and why don't some artists ever get returned?

Some data is excluded from consideration if it did not occur frequently enough in the sample from which the application makes its calculations.
If an artist or tag is too infrequent, we might not think we have enough data to make predictions about it.

## Are there any special tags?

Yes.  We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest.
You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"
in your list to bias the output toward artists with higher or lower scoring images.

## Are there any other special tricks?

Yes.  If you want to more strongly bias the artist output toward a specific tag, you can just list it multiple times.  
So for example, the query "red fox, red fox, red fox, score:7" will yield a list of artists who are more strongly associated with the tag "red fox"
than the query "red fox, score:7".

## What calculation is this thing actually performing?

Each artist is represented by a "pseudo-document" composed of all the tags from their uploaded images, treating these tags similarly to words in a text document. 
Similarly, when you input a set of tags, the system creates a pseudo-document for your query out of all the tags. 
It then uses a technique called cosine similarity to compare your tags against each artist's collection, essentially finding which artist's tags are most "similar" to yours.
This method helps identify artists whose work is closely aligned with the themes or elements you're interested in.
For those curious about the underlying mechanics of comparing text-like data, we employ the TF-IDF (Term Frequency-Inverse Document Frequency) method, a standard approach in information retrieval. 
You can read more about TF-IDF on its [Wikipedia page](https://en.wikipedia.org/wiki/Tf%E2%80%93idf).
"""


grammar=r"""
!start: (prompt | /[][():]/+)*
prompt: (emphasized | plain | comma | WHITESPACE)*
!emphasized: "(" prompt ")"
        | "(" prompt ":" [WHITESPACE] NUMBER [WHITESPACE] ")"
comma: ","
WHITESPACE: /\s+/
plain: /([^,\\\[\]():|]|\\.)+/
%import common.SIGNED_NUMBER -> NUMBER
"""
# Initialize the parser
parser = Lark(grammar, start='start')


# Function to extract tags
def extract_tags(tree):
    tags = []
    def _traverse(node):
        if isinstance(node, Token) and node.type == '__ANON_1':
            tags.append(node.value.strip())
        elif not isinstance(node, Token):
            for child in node.children:
                _traverse(child)

    _traverse(tree)
    return tags

    
# Load the model and data once at startup
with h5py.File('complete_artist_data.hdf5', 'r') as f:
    # Deserialize the vectorizer
    vectorizer_bytes = f['vectorizer'][()].tobytes()
    vectorizer_buffer = BytesIO(vectorizer_bytes)
    vectorizer = load(vectorizer_buffer)
    
    # Load X_artist
    X_artist = f['X_artist'][:]
    
    # Load artist names and decode to strings
    artist_names = [name.decode() for name in f['artist_names'][:]]
    
def clean_tag(tag):
    return ''.join(char for char in tag if ord(char) < 128)
    
#Normally returns tag to aliases, but when reverse=True, returns alias to tags
def build_aliases_dict(filename, reverse=False):   
    aliases_dict = {}
    with open(filename, 'r', newline='', encoding='utf-8') as csvfile:
        reader = csv.reader(csvfile)
        for row in reader:
            tag = clean_tag(row[0])
            alias_list = [] if row[3] == "null" else [clean_tag(alias) for alias in row[3].split(',')]
            if reverse:
                for alias in alias_list:
                    aliases_dict.setdefault(alias, []).append(tag)
            else:
                aliases_dict[tag] = alias_list
    return aliases_dict


def find_similar_tags(test_tags):

    #Initialize stuff
    if not hasattr(find_similar_tags, "fasttext_small_model"):
        find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin')
    tag_aliases_file = 'fluffyrock_3m.csv'
    if not hasattr(find_similar_tags, "tag2aliases"):
        find_similar_tags.tag2aliases = build_aliases_dict(tag_aliases_file)
    if not hasattr(find_similar_tags, "alias2tags"):
        find_similar_tags.alias2tags = build_aliases_dict(tag_aliases_file, reverse=True)
    
    
    # Find similar tags and prepare data for dataframe.
    results_data = []
    for tag in test_tags:
        modified_tag_for_search = tag.replace(' ','_')
        similar_words = find_similar_tags.fasttext_small_model.most_similar(modified_tag_for_search)
        result, seen = [], set()
        
        if modified_tag_for_search in find_similar_tags.tag2aliases:
            if tag in find_similar_tags.tag2aliases and "_" in tag:   #Implicitly tell the user that they should get rid of the underscore
                result.append(modified_tag_for_search.replace('_',' '), 1)
                seen.add(tag)
            else:   #The user correctly did not put underscores in their tag
                continue
        else:
            for item in similar_words:
                similar_word, similarity = item
                if similar_word not in seen:
                    if similar_word in find_similar_tags.tag2aliases:
                        result.append((similar_word.replace('_', ' '), round(similarity, 3)))
                        seen.add(similar_word)
                    else:
                        for similar_tag in find_similar_tags.alias2tags.get(similar_word, []):
                            if similar_tag not in seen:
                                result.append((similar_tag.replace('_', ' '), round(similarity, 3)))
                                seen.add(similar_tag)

        # Append tag and formatted similar tags to results_data
        first_entry_for_tag = True
        for word, sim in result:
            if first_entry_for_tag:
                results_data.append([tag, word, sim])
                first_entry_for_tag = False
            else:
                results_data.append(["", word, sim])
        results_data.append(["", "", ""])  # Adds a blank line after each group of tags

    if not results_data:
        results_data.append(["No Unknown Tags Found", "", ""])

    return results_data  # Return list of lists for Dataframe

def find_similar_artists(new_tags_string, top_n):
    # Parse the prompt
    parsed = parser.parse(new_tags_string)
    # Extract tags from the parsed tree
    new_image_tags = extract_tags(parsed)
    new_image_tags = [tag.replace('_', ' ').strip() for tag in new_image_tags]
    
    ###unseen_tags = list(set(OrderedDict.fromkeys(new_image_tags)) - set(vectorizer.vocabulary_.keys()))
    unseen_tags_data = find_similar_tags(new_image_tags)

    X_new_image = vectorizer.transform([','.join(new_image_tags)])
    similarities = cosine_similarity(X_new_image, X_artist)[0]
    
    top_artist_indices = np.argsort(similarities)[-top_n:][::-1]
    top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices]
    
    top_artists_str = "\n".join([f"{rank+1}. {artist[3:]} ({score:.4f})" for rank, (artist, score) in enumerate(top_artists)])
    dynamic_prompts_formatted_artists = "{" + "|".join([artist for artist, _ in top_artists]) + "}"
    
    return unseen_tags_data, top_artists_str, dynamic_prompts_formatted_artists


iface = gr.Interface(
    fn=find_similar_artists,
    inputs=[
        gr.Textbox(label="Enter image tags", placeholder="e.g. fox, outside, detailed background, ..."),
        gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
    ],
    outputs=[
        gr.Dataframe(label="Unseen Tags", headers=["Tag", "Similar Tags", "Similarity"]),
        gr.Textbox(label="Top Artists", info="These are the artists most strongly associated with your tags.  The number in parenthes is a similarity score between 0 and 1, with higher numbers indicating greater similarity."),
        gr.Textbox(label="Dynamic Prompts Format", info="For if you're using the Automatic1111 webui (https://github.com/AUTOMATIC1111/stable-diffusion-webui) with the Dynamic Prompts extension activated (https://github.com/adieyal/sd-dynamic-prompts) and want to try them all individually.") 
    ],
    title="Tagset Completer",
    description="Enter a list of comma-separated e6 tags",
    article=faq_content 
)

iface.launch()