Spaces:
Sleeping
Sleeping
File size: 9,245 Bytes
a509ff9 a33aa9b 0e02b5f a077145 a33aa9b a509ff9 d96b2be a077145 a509ff9 7dc19f7 a509ff9 0e02b5f a077145 0e02b5f a077145 0e02b5f 075d09e 0e02b5f 075d09e 0e02b5f 075d09e a077145 0e02b5f a509ff9 5792300 a077145 0e02b5f a509ff9 456433b a509ff9 0e02b5f a509ff9 5792300 456433b 58f8528 5792300 456433b 6ec6a41 456433b 5792300 d96b2be a509ff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from joblib import load
import h5py
from io import BytesIO
import csv
import re
import random
import compress_fasttext
from collections import OrderedDict
from lark import Lark
from lark import Token
faq_content="""
# Frequently Asked Questions (FAQs)
Technically I am writing this before anyone but me has used the tool, so no one has asked questions yet. But if they did, here are the questions I think they might ask:
## Does input order matter?
No
## Should I use underscores in the input tags?
It doesn't matter. The application handles tags either way.
## Why are some valid tags marked as "unseen", and why don't some artists ever get returned?
Some data is excluded from consideration if it did not occur frequently enough in the sample from which the application makes its calculations.
If an artist or tag is too infrequent, we might not think we have enough data to make predictions about it.
## Are there any special tags?
Yes. We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest.
You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"
in your list to bias the output toward artists with higher or lower scoring images.
## Are there any other special tricks?
Yes. If you want to more strongly bias the artist output toward a specific tag, you can just list it multiple times.
So for example, the query "red fox, red fox, red fox, score:7" will yield a list of artists who are more strongly associated with the tag "red fox"
than the query "red fox, score:7".
## What calculation is this thing actually performing?
Each artist is represented by a "pseudo-document" composed of all the tags from their uploaded images, treating these tags similarly to words in a text document.
Similarly, when you input a set of tags, the system creates a pseudo-document for your query out of all the tags.
It then uses a technique called cosine similarity to compare your tags against each artist's collection, essentially finding which artist's tags are most "similar" to yours.
This method helps identify artists whose work is closely aligned with the themes or elements you're interested in.
For those curious about the underlying mechanics of comparing text-like data, we employ the TF-IDF (Term Frequency-Inverse Document Frequency) method, a standard approach in information retrieval.
You can read more about TF-IDF on its [Wikipedia page](https://en.wikipedia.org/wiki/Tf%E2%80%93idf).
"""
grammar=r"""
!start: (prompt | /[][():]/+)*
prompt: (emphasized | plain | comma | WHITESPACE)*
!emphasized: "(" prompt ")"
| "(" prompt ":" [WHITESPACE] NUMBER [WHITESPACE] ")"
comma: ","
WHITESPACE: /\s+/
plain: /([^,\\\[\]():|]|\\.)+/
%import common.SIGNED_NUMBER -> NUMBER
"""
# Initialize the parser
parser = Lark(grammar, start='start')
# Function to extract tags
def extract_tags(tree):
tags = []
def _traverse(node):
if isinstance(node, Token) and node.type == '__ANON_1':
tags.append(node.value.strip())
elif not isinstance(node, Token):
for child in node.children:
_traverse(child)
_traverse(tree)
return tags
# Load the model and data once at startup
with h5py.File('complete_artist_data.hdf5', 'r') as f:
# Deserialize the vectorizer
vectorizer_bytes = f['vectorizer'][()].tobytes()
vectorizer_buffer = BytesIO(vectorizer_bytes)
vectorizer = load(vectorizer_buffer)
# Load X_artist
X_artist = f['X_artist'][:]
# Load artist names and decode to strings
artist_names = [name.decode() for name in f['artist_names'][:]]
def clean_tag(tag):
return ''.join(char for char in tag if ord(char) < 128)
#Normally returns tag to aliases, but when reverse=True, returns alias to tags
def build_aliases_dict(filename, reverse=False):
aliases_dict = {}
with open(filename, 'r', newline='', encoding='utf-8') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
tag = clean_tag(row[0])
alias_list = [] if row[3] == "null" else [clean_tag(alias) for alias in row[3].split(',')]
if reverse:
for alias in alias_list:
aliases_dict.setdefault(alias, []).append(tag)
else:
aliases_dict[tag] = alias_list
return aliases_dict
def find_similar_tags(test_tags):
#Initialize stuff
if not hasattr(find_similar_tags, "fasttext_small_model"):
find_similar_tags.fasttext_small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load('e621FastTextModel010Replacement_small.bin')
tag_aliases_file = 'fluffyrock_3m.csv'
if not hasattr(find_similar_tags, "tag2aliases"):
find_similar_tags.tag2aliases = build_aliases_dict(tag_aliases_file)
if not hasattr(find_similar_tags, "alias2tags"):
find_similar_tags.alias2tags = build_aliases_dict(tag_aliases_file, reverse=True)
# Find similar tags and prepare data for dataframe.
results_data = []
for tag in test_tags:
modified_tag_for_search = tag.replace(' ','_')
similar_words = find_similar_tags.fasttext_small_model.most_similar(modified_tag_for_search)
result, seen = [], set()
if modified_tag_for_search in find_similar_tags.tag2aliases:
if tag in find_similar_tags.tag2aliases and "_" in tag: #Implicitly tell the user that they should get rid of the underscore
result.append(modified_tag_for_search.replace('_',' '), 1)
seen.add(tag)
else: #The user correctly did not put underscores in their tag
continue
else:
for item in similar_words:
similar_word, similarity = item
if similar_word not in seen:
if similar_word in find_similar_tags.tag2aliases:
result.append((similar_word.replace('_', ' '), round(similarity, 3)))
seen.add(similar_word)
else:
for similar_tag in find_similar_tags.alias2tags.get(similar_word, []):
if similar_tag not in seen:
result.append((similar_tag.replace('_', ' '), round(similarity, 3)))
seen.add(similar_tag)
# Append tag and formatted similar tags to results_data
first_entry_for_tag = True
for word, sim in result:
if first_entry_for_tag:
results_data.append([tag, word, sim])
first_entry_for_tag = False
else:
results_data.append(["", word, sim])
results_data.append(["", "", ""]) # Adds a blank line after each group of tags
if not results_data:
results_data.append(["No Unknown Tags Found", "", ""])
return results_data # Return list of lists for Dataframe
def find_similar_artists(new_tags_string, top_n):
# Parse the prompt
parsed = parser.parse(new_tags_string)
# Extract tags from the parsed tree
new_image_tags = extract_tags(parsed)
new_image_tags = [tag.replace('_', ' ').strip() for tag in new_image_tags]
###unseen_tags = list(set(OrderedDict.fromkeys(new_image_tags)) - set(vectorizer.vocabulary_.keys()))
unseen_tags_data = find_similar_tags(new_image_tags)
X_new_image = vectorizer.transform([','.join(new_image_tags)])
similarities = cosine_similarity(X_new_image, X_artist)[0]
top_artist_indices = np.argsort(similarities)[-top_n:][::-1]
top_artists = [(artist_names[i], similarities[i]) for i in top_artist_indices]
top_artists_str = "\n".join([f"{rank+1}. {artist[3:]} ({score:.4f})" for rank, (artist, score) in enumerate(top_artists)])
dynamic_prompts_formatted_artists = "{" + "|".join([artist for artist, _ in top_artists]) + "}"
return unseen_tags_data, top_artists_str, dynamic_prompts_formatted_artists
iface = gr.Interface(
fn=find_similar_artists,
inputs=[
gr.Textbox(label="Enter image tags", placeholder="e.g. fox, outside, detailed background, ..."),
gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
],
outputs=[
gr.Dataframe(label="Unseen Tags", headers=["Tag", "Similar Tags", "Similarity"]),
gr.Textbox(label="Top Artists", info="These are the artists most strongly associated with your tags. The number in parenthes is a similarity score between 0 and 1, with higher numbers indicating greater similarity."),
gr.Textbox(label="Dynamic Prompts Format", info="For if you're using the Automatic1111 webui (https://github.com/AUTOMATIC1111/stable-diffusion-webui) with the Dynamic Prompts extension activated (https://github.com/adieyal/sd-dynamic-prompts) and want to try them all individually.")
],
title="Tagset Completer",
description="Enter a list of comma-separated e6 tags",
article=faq_content
)
iface.launch()
|