reach-vb HF staff commited on
Commit
76a4a39
·
verified ·
1 Parent(s): 8384dac

Update app.py (#1)

Browse files

- Update app.py (526fc6581d88c35d03e3bb0b86a051a68c54993e)

Files changed (1) hide show
  1. app.py +81 -50
app.py CHANGED
@@ -1,64 +1,95 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
 
 
 
 
 
 
 
 
 
59
  ],
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ import requests
4
+ import json
5
+ from huggingface_hub import HfApi, create_repo
6
 
7
+ def download_file(digest, image):
8
+ url = f"https://registry.ollama.ai/v2/library/{image}/blobs/{digest}"
9
+ file_name = f"blobs/{digest}"
 
10
 
11
+ # Create the directory if it doesn't exist
12
+ os.makedirs(os.path.dirname(file_name), exist_ok=True)
13
 
14
+ # Download the file
15
+ print(f"Downloading {url} to {file_name}")
16
+ response = requests.get(url, allow_redirects=True)
17
+ if response.status_code == 200:
18
+ with open(file_name, 'wb') as f:
19
+ f.write(response.content)
20
+ else:
21
+ print(f"Failed to download {url}")
 
22
 
23
+ def fetch_manifest(image, tag):
24
+ manifest_url = f"https://registry.ollama.ai/v2/library/{image}/manifests/{tag}"
25
+ response = requests.get(manifest_url)
26
+ if response.status_code == 200:
27
+ return response.json()
28
+ else:
29
+ return None
30
 
31
+ def upload_to_huggingface(repo_id, folder_path):
32
+ api = HfApi()
33
+ repo_path = create_repo(repo_id, "model", exists_ok=True)
34
+ print(f"Repo created {repo_path}")
35
+ try:
36
+ api.upload_folder(
37
+ folder_path=folder_path,
38
+ repo_id=repo_id,
39
+ repo_type="model",
40
+ )
41
+ return "Upload successful"
42
+ except Exception as e:
43
+ return f"Upload failed: {str(e)}"
44
 
45
+ def process_image_tag(image_tag, repo_id):
46
+ # Extract image and tag from the input
47
+ image, tag = image_tag.split(':')
48
 
49
+ # Fetch the manifest JSON
50
+ manifest_json = fetch_manifest(image, tag)
51
+ if not manifest_json or 'errors' in manifest_json:
52
+ return f"Failed to fetch the manifest for {image}:{tag}"
 
 
 
 
53
 
54
+ # Save the manifest JSON to the blobs folder
55
+ manifest_file_path = "blobs/manifest.json"
56
+ os.makedirs(os.path.dirname(manifest_file_path), exist_ok=True)
57
+ with open(manifest_file_path, 'w') as f:
58
+ json.dump(manifest_json, f)
59
 
60
+ # Extract the digest values from the JSON
61
+ digests = [layer['digest'] for layer in manifest_json.get('layers', [])]
62
 
63
+ # Download each file
64
+ for digest in digests:
65
+ download_file(digest, image)
66
+
67
+ # Download the config file
68
+ config_digest = manifest_json.get('config', {}).get('digest')
69
+ if config_digest:
70
+ download_file(config_digest, image)
71
+
72
+ # Upload to Hugging Face Hub
73
+ upload_result = upload_to_huggingface(repo_id, 'blobs/*')
74
+
75
+ # Delete the blobs folder
76
+ try:
77
+ os.rmtree('blobs')
78
+ return f"Successfully fetched and downloaded files for {image}:{tag}\n{upload_result}\nBlobs folder deleted"
79
+ except Exception as e:
80
+ return f"Failed to delete blobs folder: {str(e)}"
81
+
82
+ # Create the Gradio interface
83
+ iface = gr.Interface(
84
+ fn=process_image_tag,
85
+ inputs=[
86
+ gr.Textbox(placeholder="Enter image:tag", label="Image and Tag"),
87
+ gr.Textbox(placeholder="Enter Hugging Face repo ID", label="Hugging Face Repo ID")
88
  ],
89
+ outputs=gr.Textbox(label="Result"),
90
+ title="Registry File Downloader and Uploader",
91
+ description="Enter the image and tag to download the corresponding files from the registry and upload them to the Hugging Face Hub."
92
  )
93
 
94
+ # Launch the Gradio app
95
+ iface.launch()