Spaces:
Running
Running
File size: 5,655 Bytes
7bcf8d7 1073464 7bcf8d7 1073464 7bcf8d7 0d24db7 7bcf8d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import re
import tempfile
import torch
import sys
import gradio as gr
import numpy as np
from huggingface_hub import hf_hub_download
# Setup TTS env
if "vits" not in sys.path:
sys.path.append("vits")
from vits import commons, utils
from vits.models import SynthesizerTrn
TTS_LANGUAGES = {}
with open(f"data/tts/all_langs.tsv") as f:
for line in f:
iso, name = line.split(" ", 1)
TTS_LANGUAGES[iso] = name
class TextMapper(object):
def __init__(self, vocab_file):
self.symbols = [
x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
]
self.SPACE_ID = self.symbols.index(" ")
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text, cleaner_names):
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
"""
sequence = []
clean_text = text.strip()
for symbol in clean_text:
symbol_id = self._symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def uromanize(self, text, uroman_pl):
iso = "xxx"
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join([text]))
cmd = f"perl " + uroman_pl
cmd += f" -l {iso} "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
outtexts = []
with open(tf2.name) as f:
for line in f:
line = re.sub(r"\s+", " ", line).strip()
outtexts.append(line)
outtext = outtexts[0]
return outtext
def get_text(self, text, hps):
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def filter_oov(self, text, lang=None):
text = self.preprocess_char(text, lang=lang)
val_chars = self._symbol_to_id
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
return txt_filt
def preprocess_char(self, text, lang=None):
"""
Special treatement of characters in certain languages
"""
if lang == "ron":
text = text.replace("ț", "ţ")
print(f"{lang} (ț -> ţ): {text}")
return text
def synthesize(text, lang, speed=None):
if speed is None:
speed = 1.0
lang_code = lang.split()[0].strip()
vocab_file = hf_hub_download(
repo_id="facebook/mms-tts",
filename="vocab.txt",
subfolder=f"models/{lang_code}",
)
config_file = hf_hub_download(
repo_id="facebook/mms-tts",
filename="config.json",
subfolder=f"models/{lang_code}",
)
g_pth = hf_hub_download(
repo_id="facebook/mms-tts",
filename="G_100000.pth",
subfolder=f"models/{lang_code}",
)
if torch.cuda.is_available():
device = torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
):
device = torch.device("mps")
else:
device = torch.device("cpu")
print(f"Run inference with {device}")
assert os.path.isfile(config_file), f"{config_file} doesn't exist"
hps = utils.get_hparams_from_file(config_file)
text_mapper = TextMapper(vocab_file)
net_g = SynthesizerTrn(
len(text_mapper.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
)
net_g.to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(g_pth, net_g, None)
is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
if is_uroman:
uroman_dir = "uroman"
assert os.path.exists(uroman_dir)
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
text = text_mapper.uromanize(text, uroman_pl)
text = text.lower()
text = text_mapper.filter_oov(text, lang=lang)
stn_tst = text_mapper.get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
hyp = (
net_g.infer(
x_tst,
x_tst_lengths,
noise_scale=0.667,
noise_scale_w=0.8,
length_scale=1.0 / speed,
)[0][0, 0]
.cpu()
.float()
.numpy()
)
hyp = (hyp * 32768).astype(np.int16)
return (hps.data.sampling_rate, hyp), text
TTS_EXAMPLES = [
["I am going to the store.", "eng (English)"],
["안녕하세요.", "kor (Korean)"],
["क्या मुझे पीने का पानी मिल सकता है?", "hin (Hindi)"],
["Tanış olmağıma çox şadam", "azj-script_latin (Azerbaijani, North)"],
["Mu zo murna a cikin ƙasar.", "hau (Hausa)"],
]
|