Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
from langdetect import detect | |
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "PixArt XL 2.0", "Disney Cartoon", "CleanLinearMix", "Waifu 1.4"] | |
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=None): | |
if prompt == None: | |
return None | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
language = detect(prompt) | |
key = random.randint(0, 999) | |
print(f'\033[1mГенерация {key}:\033[0m {prompt}') | |
if language == 'ru': | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}') | |
if model == 'DALL-E 3 XL': | |
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" | |
if model == 'Playground 2': | |
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic" | |
if model == 'Openjourney 4': | |
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4" | |
if model == 'AbsoluteReality 1.8.1': | |
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1" | |
if model == 'Lyriel 1.6': | |
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16" | |
if model == 'Animagine XL 2.0': | |
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0" | |
if model == 'Counterfeit 2.5': | |
API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5" | |
if model == 'Realistic Vision 5.1': | |
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51" | |
if model == 'Incursios 1.6': | |
API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6" | |
if model == 'Anime Detailer XL': | |
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora" | |
if model == 'epiCRealism': | |
API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism" | |
if model == 'PixelArt XL': | |
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl" | |
if model == 'NewReality XL': | |
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw" | |
if model == 'Anything 5.0': | |
API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited" | |
if model == 'PixArt XL 2.0': | |
API_URL = "https://api-inference.huggingface.co/models/PixArt-alpha/PixArt-XL-2-1024-MS" | |
if model == 'Vector Art XL': | |
API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora" | |
if model == 'Disney Cartoon': | |
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixal-cartoon" | |
if model == 'CleanLinearMix': | |
API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw" | |
if model == 'Waifu 1.4': | |
API_URL = "https://api-inference.huggingface.co/models/gisohi6975/nsfw-waifu-diffusion" | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed is not None else random.randint(-1, 2147483647) | |
} | |
image_bytes = requests.post(API_URL, headers=headers, json=payload).content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})') | |
return image | |
css = """ | |
footer {visibility: hidden !important;} | |
""" | |
with gr.Blocks(css=css) as dalle: | |
with gr.Tab("Базовые настройки"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input") | |
model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list) | |
with gr.Tab("Расширенные настройки"): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
with gr.Row(): | |
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery") | |
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method], outputs=image_output) | |
dalle.launch(show_api=False) |