Spaces:
Paused
Paused
File size: 5,417 Bytes
10b581c 9dab6c2 10b581c 9dab6c2 10b581c 70f2266 10b581c 9dab6c2 a78ae85 9dab6c2 45a9d7f cc5ea83 9dab6c2 10b581c cc5ea83 9dab6c2 10b581c cc5ea83 9dab6c2 10b581c ecf6d80 10b581c f57c553 10b581c f57c553 10b581c 6a76f54 10b581c ecf6d80 6a76f54 10b581c ecf6d80 10b581c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import os
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer
from datetime import datetime
import random
from huggingface_hub import hf_hub_download
# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_left_lora_weights.safetensors",
local_dir="checkpoints"
)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_up_lora_weights.safetensors",
local_dir="checkpoints"
)
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
lora_path = "your lora path"
lora_rank = 256
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
lora_path = "checkpoints/"
adapter_name = None
if orbit_type == "Left":
weight_name = "orbit_left_lora_weights.safetensors"
adapter_name = "orbit_left_lora_weights"
elif orbit_type == "Up":
weight_name = "orbit_up_lora_weights.safetensors"
adapter_name = "orbit_up_lora_weights"
lora_rank = 256
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=adapter_name)
pipe.fuse_lora(lora_scale=1 / lora_rank)
pipe.to("cuda")
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
image = load_image(image_path)
seed = random.randint(0, 2**8 - 1)
video = pipe(
image,
prompt,
num_inference_steps=50, # NOT Changed
guidance_scale=7.0, # NOT Changed
use_dynamic_cfg=True,
generator=torch.Generator(device="cpu").manual_seed(seed)
)
# Generate a timestamp for the output filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
return f"output_{timestamp}.mp4"
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# DimensionX")
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/wenqsun/DimensionX">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://chenshuo20.github.io/DimensionX/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2411.04928">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/DimensionX?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image Input", type="filepath")
prompt = gr.Textbox(label="Prompt")
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left")
submit_btn = gr.Button("Submit")
with gr.Column():
video_out = gr.Video(label="Video output")
examples = gr.Examples(
examples = [
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Left",
"./examples/output_astronaut_left.mp4"
],
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Left",
"./examples/output_astronaut_up.mp4"
]
],
inputs=[image_in, prompt, orbit_type, video_out]
)
submit_btn.click(
fn=infer,
inputs=[image_in, prompt, orbit_type],
outputs=[video_out]
)
demo.queue().launch(show_error=True, show_api=False) |