File size: 2,961 Bytes
cfd58c5
2a5abe3
88cd06b
cfd58c5
d10d42c
0f61089
cfd58c5
 
88cd06b
 
 
 
 
 
 
cfd58c5
88cd06b
b026f7e
af8075f
88cd06b
b026f7e
f4e63b7
99cf07f
a2597a8
 
 
f3aa612
cfd58c5
 
 
249facd
f3aa612
cfd58c5
c370655
f3aa612
cfd58c5
 
 
d10d42c
 
 
 
 
0f61089
 
 
 
 
 
 
 
d10d42c
cfd58c5
107d5cd
 
3f1c26e
d10d42c
 
 
fad8edf
3f1c26e
d10d42c
 
 
fad8edf
 
 
0f61089
591c163
0f61089
fad8edf
 
b026f7e
cfd58c5
107d5cd
 
 
b026f7e
fad8edf
0f61089
fad8edf
cfd58c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import torch
from transformers import AutoProcessor, BarkModel
import scipy
from pytube import YouTube
import ffmpeg


# device = "cuda" if torch.cuda.is_available() else "cpu"
# model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device)
# model.enable_cpu_offload()

device = "cpu"


processor = AutoProcessor.from_pretrained("suno/bark-small")
model = BarkModel.from_pretrained("suno/bark-small").to(device)
num_list = ["1","2","3","4","5","6","7","8","9","10"]
lang_list = ["en","de"]

def run_bark(text, n, lang):
    #history_prompt = []
    semantic_prompt=f"v2/{lang}_speaker_{int(n)-1}"

        #text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
    inputs = processor(text=text,
        voice_preset = semantic_prompt,
        return_tensors="pt",
    )
    
    speech_values = model.generate(**inputs, do_sample=True)
    sampling_rate = model.generation_config.sample_rate

    #sampling_rate = model.config.sample_rate
    #sampling_rate = 24000
    scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
    return ("bark_out.wav")

def load_video_yt(vid):
    yt = YouTube(vid)
    vid = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download(filename="tmp.mp4")
    vid_aud = yt.streams.filter(only_audio=True)[0].download(filename="tmp_aud.mp3")
    return vid, vid_aud 

def trim_clip(clip):
    start_pos = 1
    duration = 10
    audio_input = ffmpeg.input(url)
    audio_output = ffmpeg.output(audio_input, save_location, ss=start_pos, t=duration)
    audio_output.run()
    return audio_output
    
with gr.Blocks() as app:
    with gr.Column():
        in_text = gr.Textbox()
        with gr.Tab("Default"):
            with gr.Row():
                speaker_num = gr.Dropdown(label="Speaker Voice", choices=num_list,value="1")
                speaker_lang = gr.Dropdown(label="Speaker Language", choices=lang_list,value="en")
            go_btn = gr.Button()
        with gr.Tab("Upload"):
            with gr.Row():
                in_aud_mic = gr.Audio(source='microphone')
                in_aud_file = gr.Audio(source='upload')
            with gr.Row():
                in_aud_yt = gr.Textbox(label="YouTube URL")
                load_yt_btn = gr.Button("Load URL")
            with gr.Row():
                trim_clip_btn = gr.Button("Trim Clip")
                trim_aud = gr.Audio(source='upload')
            yt_vid = gr.Video()
            alt_go_btn = gr.Button()
        #speaker_num = gr.Number(value=0)

    with gr.Column():
        out_audio = gr.Audio()

    go_btn.click(run_bark,[in_text, speaker_num, speaker_lang],out_audio)
    load_yt_btn.click(load_video_yt, in_aud_yt, [yt_vid,in_aud_file])
    trim_clip_btn.click(trim_clip,None,trim_aud)
    #alt_go_btn.click()

app.launch()