Spaces:
Paused
Paused
Upload 7 files
Browse files- README.md +6 -5
- app.py +805 -0
- mdx_models/data.json +354 -0
- packages.txt +1 -0
- requirements.txt +3 -0
- test.mp3 +0 -0
- utils.py +142 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title: Audio Separator
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.28.3
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Vocal-Instrumental Audio Separator
|
3 |
+
emoji: 🏃
|
4 |
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.28.3
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
11 |
+
short_description: Vocal and background audio separator
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# os.system("pip install ./ort_nightly_gpu-1.17.0.dev20240118002-cp310-cp310-manylinux_2_28_x86_64.whl")
|
3 |
+
os.system("pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/")
|
4 |
+
import gc
|
5 |
+
import hashlib
|
6 |
+
import queue
|
7 |
+
import threading
|
8 |
+
import json
|
9 |
+
import shlex
|
10 |
+
import sys
|
11 |
+
import subprocess
|
12 |
+
import librosa
|
13 |
+
import numpy as np
|
14 |
+
import soundfile as sf
|
15 |
+
import torch
|
16 |
+
from tqdm import tqdm
|
17 |
+
from utils import (
|
18 |
+
remove_directory_contents,
|
19 |
+
create_directories,
|
20 |
+
download_manager,
|
21 |
+
)
|
22 |
+
import random
|
23 |
+
import spaces
|
24 |
+
from utils import logger
|
25 |
+
import onnxruntime as ort
|
26 |
+
import warnings
|
27 |
+
import spaces
|
28 |
+
import gradio as gr
|
29 |
+
import logging
|
30 |
+
import time
|
31 |
+
|
32 |
+
warnings.filterwarnings("ignore")
|
33 |
+
|
34 |
+
title = "<center><strong><font size='7'>Audio🔹separator</font></strong></center>"
|
35 |
+
description = "This demo uses the MDX-Net models for vocal and background sound separation."
|
36 |
+
theme = "NoCrypt/miku"
|
37 |
+
|
38 |
+
stem_naming = {
|
39 |
+
"Vocals": "Instrumental",
|
40 |
+
"Other": "Instruments",
|
41 |
+
"Instrumental": "Vocals",
|
42 |
+
"Drums": "Drumless",
|
43 |
+
"Bass": "Bassless",
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
class MDXModel:
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
device,
|
51 |
+
dim_f,
|
52 |
+
dim_t,
|
53 |
+
n_fft,
|
54 |
+
hop=1024,
|
55 |
+
stem_name=None,
|
56 |
+
compensation=1.000,
|
57 |
+
):
|
58 |
+
self.dim_f = dim_f
|
59 |
+
self.dim_t = dim_t
|
60 |
+
self.dim_c = 4
|
61 |
+
self.n_fft = n_fft
|
62 |
+
self.hop = hop
|
63 |
+
self.stem_name = stem_name
|
64 |
+
self.compensation = compensation
|
65 |
+
|
66 |
+
self.n_bins = self.n_fft // 2 + 1
|
67 |
+
self.chunk_size = hop * (self.dim_t - 1)
|
68 |
+
self.window = torch.hann_window(
|
69 |
+
window_length=self.n_fft, periodic=True
|
70 |
+
).to(device)
|
71 |
+
|
72 |
+
out_c = self.dim_c
|
73 |
+
|
74 |
+
self.freq_pad = torch.zeros(
|
75 |
+
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
76 |
+
).to(device)
|
77 |
+
|
78 |
+
def stft(self, x):
|
79 |
+
x = x.reshape([-1, self.chunk_size])
|
80 |
+
x = torch.stft(
|
81 |
+
x,
|
82 |
+
n_fft=self.n_fft,
|
83 |
+
hop_length=self.hop,
|
84 |
+
window=self.window,
|
85 |
+
center=True,
|
86 |
+
return_complex=True,
|
87 |
+
)
|
88 |
+
x = torch.view_as_real(x)
|
89 |
+
x = x.permute([0, 3, 1, 2])
|
90 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
91 |
+
[-1, 4, self.n_bins, self.dim_t]
|
92 |
+
)
|
93 |
+
return x[:, :, : self.dim_f]
|
94 |
+
|
95 |
+
def istft(self, x, freq_pad=None):
|
96 |
+
freq_pad = (
|
97 |
+
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
98 |
+
if freq_pad is None
|
99 |
+
else freq_pad
|
100 |
+
)
|
101 |
+
x = torch.cat([x, freq_pad], -2)
|
102 |
+
# c = 4*2 if self.target_name=='*' else 2
|
103 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
104 |
+
[-1, 2, self.n_bins, self.dim_t]
|
105 |
+
)
|
106 |
+
x = x.permute([0, 2, 3, 1])
|
107 |
+
x = x.contiguous()
|
108 |
+
x = torch.view_as_complex(x)
|
109 |
+
x = torch.istft(
|
110 |
+
x,
|
111 |
+
n_fft=self.n_fft,
|
112 |
+
hop_length=self.hop,
|
113 |
+
window=self.window,
|
114 |
+
center=True,
|
115 |
+
)
|
116 |
+
return x.reshape([-1, 2, self.chunk_size])
|
117 |
+
|
118 |
+
|
119 |
+
class MDX:
|
120 |
+
DEFAULT_SR = 44100
|
121 |
+
# Unit: seconds
|
122 |
+
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
|
123 |
+
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self, model_path: str, params: MDXModel, processor=0
|
127 |
+
):
|
128 |
+
# Set the device and the provider (CPU or CUDA)
|
129 |
+
self.device = (
|
130 |
+
torch.device(f"cuda:{processor}")
|
131 |
+
if processor >= 0
|
132 |
+
else torch.device("cpu")
|
133 |
+
)
|
134 |
+
self.provider = (
|
135 |
+
["CUDAExecutionProvider"]
|
136 |
+
if processor >= 0
|
137 |
+
else ["CPUExecutionProvider"]
|
138 |
+
)
|
139 |
+
|
140 |
+
self.model = params
|
141 |
+
|
142 |
+
# Load the ONNX model using ONNX Runtime
|
143 |
+
self.ort = ort.InferenceSession(model_path, providers=self.provider)
|
144 |
+
# Preload the model for faster performance
|
145 |
+
self.ort.run(
|
146 |
+
None,
|
147 |
+
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()},
|
148 |
+
)
|
149 |
+
self.process = lambda spec: self.ort.run(
|
150 |
+
None, {"input": spec.cpu().numpy()}
|
151 |
+
)[0]
|
152 |
+
|
153 |
+
self.prog = None
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def get_hash(model_path):
|
157 |
+
try:
|
158 |
+
with open(model_path, "rb") as f:
|
159 |
+
f.seek(-10000 * 1024, 2)
|
160 |
+
model_hash = hashlib.md5(f.read()).hexdigest()
|
161 |
+
except: # noqa
|
162 |
+
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
|
163 |
+
|
164 |
+
return model_hash
|
165 |
+
|
166 |
+
@staticmethod
|
167 |
+
def segment(
|
168 |
+
wave,
|
169 |
+
combine=True,
|
170 |
+
chunk_size=DEFAULT_CHUNK_SIZE,
|
171 |
+
margin_size=DEFAULT_MARGIN_SIZE,
|
172 |
+
):
|
173 |
+
"""
|
174 |
+
Segment or join segmented wave array
|
175 |
+
|
176 |
+
Args:
|
177 |
+
wave: (np.array) Wave array to be segmented or joined
|
178 |
+
combine: (bool) If True, combines segmented wave array.
|
179 |
+
If False, segments wave array.
|
180 |
+
chunk_size: (int) Size of each segment (in samples)
|
181 |
+
margin_size: (int) Size of margin between segments (in samples)
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
numpy array: Segmented or joined wave array
|
185 |
+
"""
|
186 |
+
|
187 |
+
if combine:
|
188 |
+
# Initializing as None instead of [] for later numpy array concatenation
|
189 |
+
processed_wave = None
|
190 |
+
for segment_count, segment in enumerate(wave):
|
191 |
+
start = 0 if segment_count == 0 else margin_size
|
192 |
+
end = None if segment_count == len(wave) - 1 else -margin_size
|
193 |
+
if margin_size == 0:
|
194 |
+
end = None
|
195 |
+
if processed_wave is None: # Create array for first segment
|
196 |
+
processed_wave = segment[:, start:end]
|
197 |
+
else: # Concatenate to existing array for subsequent segments
|
198 |
+
processed_wave = np.concatenate(
|
199 |
+
(processed_wave, segment[:, start:end]), axis=-1
|
200 |
+
)
|
201 |
+
|
202 |
+
else:
|
203 |
+
processed_wave = []
|
204 |
+
sample_count = wave.shape[-1]
|
205 |
+
|
206 |
+
if chunk_size <= 0 or chunk_size > sample_count:
|
207 |
+
chunk_size = sample_count
|
208 |
+
|
209 |
+
if margin_size > chunk_size:
|
210 |
+
margin_size = chunk_size
|
211 |
+
|
212 |
+
for segment_count, skip in enumerate(
|
213 |
+
range(0, sample_count, chunk_size)
|
214 |
+
):
|
215 |
+
margin = 0 if segment_count == 0 else margin_size
|
216 |
+
end = min(skip + chunk_size + margin_size, sample_count)
|
217 |
+
start = skip - margin
|
218 |
+
|
219 |
+
cut = wave[:, start:end].copy()
|
220 |
+
processed_wave.append(cut)
|
221 |
+
|
222 |
+
if end == sample_count:
|
223 |
+
break
|
224 |
+
|
225 |
+
return processed_wave
|
226 |
+
|
227 |
+
def pad_wave(self, wave):
|
228 |
+
"""
|
229 |
+
Pad the wave array to match the required chunk size
|
230 |
+
|
231 |
+
Args:
|
232 |
+
wave: (np.array) Wave array to be padded
|
233 |
+
|
234 |
+
Returns:
|
235 |
+
tuple: (padded_wave, pad, trim)
|
236 |
+
- padded_wave: Padded wave array
|
237 |
+
- pad: Number of samples that were padded
|
238 |
+
- trim: Number of samples that were trimmed
|
239 |
+
"""
|
240 |
+
n_sample = wave.shape[1]
|
241 |
+
trim = self.model.n_fft // 2
|
242 |
+
gen_size = self.model.chunk_size - 2 * trim
|
243 |
+
pad = gen_size - n_sample % gen_size
|
244 |
+
|
245 |
+
# Padded wave
|
246 |
+
wave_p = np.concatenate(
|
247 |
+
(
|
248 |
+
np.zeros((2, trim)),
|
249 |
+
wave,
|
250 |
+
np.zeros((2, pad)),
|
251 |
+
np.zeros((2, trim)),
|
252 |
+
),
|
253 |
+
1,
|
254 |
+
)
|
255 |
+
|
256 |
+
mix_waves = []
|
257 |
+
for i in range(0, n_sample + pad, gen_size):
|
258 |
+
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
|
259 |
+
mix_waves.append(waves)
|
260 |
+
|
261 |
+
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(
|
262 |
+
self.device
|
263 |
+
)
|
264 |
+
|
265 |
+
return mix_waves, pad, trim
|
266 |
+
|
267 |
+
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
|
268 |
+
"""
|
269 |
+
Process each wave segment in a multi-threaded environment
|
270 |
+
|
271 |
+
Args:
|
272 |
+
mix_waves: (torch.Tensor) Wave segments to be processed
|
273 |
+
trim: (int) Number of samples trimmed during padding
|
274 |
+
pad: (int) Number of samples padded during padding
|
275 |
+
q: (queue.Queue) Queue to hold the processed wave segments
|
276 |
+
_id: (int) Identifier of the processed wave segment
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
numpy array: Processed wave segment
|
280 |
+
"""
|
281 |
+
mix_waves = mix_waves.split(1)
|
282 |
+
with torch.no_grad():
|
283 |
+
pw = []
|
284 |
+
for mix_wave in mix_waves:
|
285 |
+
self.prog.update()
|
286 |
+
spec = self.model.stft(mix_wave)
|
287 |
+
processed_spec = torch.tensor(self.process(spec))
|
288 |
+
processed_wav = self.model.istft(
|
289 |
+
processed_spec.to(self.device)
|
290 |
+
)
|
291 |
+
processed_wav = (
|
292 |
+
processed_wav[:, :, trim:-trim]
|
293 |
+
.transpose(0, 1)
|
294 |
+
.reshape(2, -1)
|
295 |
+
.cpu()
|
296 |
+
.numpy()
|
297 |
+
)
|
298 |
+
pw.append(processed_wav)
|
299 |
+
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
|
300 |
+
q.put({_id: processed_signal})
|
301 |
+
return processed_signal
|
302 |
+
|
303 |
+
def process_wave(self, wave: np.array, mt_threads=1):
|
304 |
+
"""
|
305 |
+
Process the wave array in a multi-threaded environment
|
306 |
+
|
307 |
+
Args:
|
308 |
+
wave: (np.array) Wave array to be processed
|
309 |
+
mt_threads: (int) Number of threads to be used for processing
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
numpy array: Processed wave array
|
313 |
+
"""
|
314 |
+
self.prog = tqdm(total=0)
|
315 |
+
chunk = wave.shape[-1] // mt_threads
|
316 |
+
waves = self.segment(wave, False, chunk)
|
317 |
+
|
318 |
+
# Create a queue to hold the processed wave segments
|
319 |
+
q = queue.Queue()
|
320 |
+
threads = []
|
321 |
+
for c, batch in enumerate(waves):
|
322 |
+
mix_waves, pad, trim = self.pad_wave(batch)
|
323 |
+
self.prog.total = len(mix_waves) * mt_threads
|
324 |
+
thread = threading.Thread(
|
325 |
+
target=self._process_wave, args=(mix_waves, trim, pad, q, c)
|
326 |
+
)
|
327 |
+
thread.start()
|
328 |
+
threads.append(thread)
|
329 |
+
for thread in threads:
|
330 |
+
thread.join()
|
331 |
+
self.prog.close()
|
332 |
+
|
333 |
+
processed_batches = []
|
334 |
+
while not q.empty():
|
335 |
+
processed_batches.append(q.get())
|
336 |
+
processed_batches = [
|
337 |
+
list(wave.values())[0]
|
338 |
+
for wave in sorted(
|
339 |
+
processed_batches, key=lambda d: list(d.keys())[0]
|
340 |
+
)
|
341 |
+
]
|
342 |
+
assert len(processed_batches) == len(
|
343 |
+
waves
|
344 |
+
), "Incomplete processed batches, please reduce batch size!"
|
345 |
+
return self.segment(processed_batches, True, chunk)
|
346 |
+
|
347 |
+
|
348 |
+
@spaces.GPU()
|
349 |
+
def run_mdx(
|
350 |
+
model_params,
|
351 |
+
output_dir,
|
352 |
+
model_path,
|
353 |
+
filename,
|
354 |
+
exclude_main=False,
|
355 |
+
exclude_inversion=False,
|
356 |
+
suffix=None,
|
357 |
+
invert_suffix=None,
|
358 |
+
denoise=False,
|
359 |
+
keep_orig=True,
|
360 |
+
m_threads=2,
|
361 |
+
device_base="cuda",
|
362 |
+
):
|
363 |
+
if device_base == "cuda":
|
364 |
+
device = torch.device("cuda:0")
|
365 |
+
processor_num = 0
|
366 |
+
device_properties = torch.cuda.get_device_properties(device)
|
367 |
+
vram_gb = device_properties.total_memory / 1024**3
|
368 |
+
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
|
369 |
+
logger.info(f"threads: {m_threads} vram: {vram_gb}")
|
370 |
+
else:
|
371 |
+
device = torch.device("cpu")
|
372 |
+
processor_num = -1
|
373 |
+
m_threads = 1
|
374 |
+
|
375 |
+
model_hash = MDX.get_hash(model_path)
|
376 |
+
mp = model_params.get(model_hash)
|
377 |
+
model = MDXModel(
|
378 |
+
device,
|
379 |
+
dim_f=mp["mdx_dim_f_set"],
|
380 |
+
dim_t=2 ** mp["mdx_dim_t_set"],
|
381 |
+
n_fft=mp["mdx_n_fft_scale_set"],
|
382 |
+
stem_name=mp["primary_stem"],
|
383 |
+
compensation=mp["compensate"],
|
384 |
+
)
|
385 |
+
|
386 |
+
mdx_sess = MDX(model_path, model, processor=processor_num)
|
387 |
+
wave, sr = librosa.load(filename, mono=False, sr=44100)
|
388 |
+
# normalizing input wave gives better output
|
389 |
+
peak = max(np.max(wave), abs(np.min(wave)))
|
390 |
+
wave /= peak
|
391 |
+
if denoise:
|
392 |
+
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (
|
393 |
+
mdx_sess.process_wave(wave, m_threads)
|
394 |
+
)
|
395 |
+
wave_processed *= 0.5
|
396 |
+
else:
|
397 |
+
wave_processed = mdx_sess.process_wave(wave, m_threads)
|
398 |
+
# return to previous peak
|
399 |
+
wave_processed *= peak
|
400 |
+
stem_name = model.stem_name if suffix is None else suffix
|
401 |
+
|
402 |
+
main_filepath = None
|
403 |
+
if not exclude_main:
|
404 |
+
main_filepath = os.path.join(
|
405 |
+
output_dir,
|
406 |
+
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
407 |
+
)
|
408 |
+
sf.write(main_filepath, wave_processed.T, sr)
|
409 |
+
|
410 |
+
invert_filepath = None
|
411 |
+
if not exclude_inversion:
|
412 |
+
diff_stem_name = (
|
413 |
+
stem_naming.get(stem_name)
|
414 |
+
if invert_suffix is None
|
415 |
+
else invert_suffix
|
416 |
+
)
|
417 |
+
stem_name = (
|
418 |
+
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
|
419 |
+
)
|
420 |
+
invert_filepath = os.path.join(
|
421 |
+
output_dir,
|
422 |
+
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
423 |
+
)
|
424 |
+
sf.write(
|
425 |
+
invert_filepath,
|
426 |
+
(-wave_processed.T * model.compensation) + wave.T,
|
427 |
+
sr,
|
428 |
+
)
|
429 |
+
|
430 |
+
if not keep_orig:
|
431 |
+
os.remove(filename)
|
432 |
+
|
433 |
+
del mdx_sess, wave_processed, wave
|
434 |
+
gc.collect()
|
435 |
+
torch.cuda.empty_cache()
|
436 |
+
return main_filepath, invert_filepath
|
437 |
+
|
438 |
+
|
439 |
+
MDX_DOWNLOAD_LINK = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/"
|
440 |
+
UVR_MODELS = [
|
441 |
+
"UVR-MDX-NET-Voc_FT.onnx",
|
442 |
+
"UVR_MDXNET_KARA_2.onnx",
|
443 |
+
"Reverb_HQ_By_FoxJoy.onnx",
|
444 |
+
"UVR-MDX-NET-Inst_HQ_4.onnx",
|
445 |
+
]
|
446 |
+
BASE_DIR = "." # os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
447 |
+
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models")
|
448 |
+
output_dir = os.path.join(BASE_DIR, "clean_song_output")
|
449 |
+
|
450 |
+
|
451 |
+
def convert_to_stereo_and_wav(audio_path):
|
452 |
+
wave, sr = librosa.load(audio_path, mono=False, sr=44100)
|
453 |
+
|
454 |
+
# check if mono
|
455 |
+
if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav": # noqa
|
456 |
+
stereo_path = f"{os.path.splitext(audio_path)[0]}_stereo.wav"
|
457 |
+
stereo_path = os.path.join(output_dir, stereo_path)
|
458 |
+
|
459 |
+
command = shlex.split(
|
460 |
+
f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"'
|
461 |
+
)
|
462 |
+
sub_params = {
|
463 |
+
"stdout": subprocess.PIPE,
|
464 |
+
"stderr": subprocess.PIPE,
|
465 |
+
"creationflags": subprocess.CREATE_NO_WINDOW
|
466 |
+
if sys.platform == "win32"
|
467 |
+
else 0,
|
468 |
+
}
|
469 |
+
process_wav = subprocess.Popen(command, **sub_params)
|
470 |
+
output, errors = process_wav.communicate()
|
471 |
+
if process_wav.returncode != 0 or not os.path.exists(stereo_path):
|
472 |
+
raise Exception("Error processing audio to stereo wav")
|
473 |
+
|
474 |
+
return stereo_path
|
475 |
+
else:
|
476 |
+
return audio_path
|
477 |
+
|
478 |
+
|
479 |
+
def get_hash(filepath):
|
480 |
+
with open(filepath, 'rb') as f:
|
481 |
+
file_hash = hashlib.blake2b()
|
482 |
+
while chunk := f.read(8192):
|
483 |
+
file_hash.update(chunk)
|
484 |
+
|
485 |
+
return file_hash.hexdigest()[:18]
|
486 |
+
|
487 |
+
def random_sleep():
|
488 |
+
sleep_time = round(random.uniform(5.2, 7.9), 1)
|
489 |
+
time.sleep(sleep_time)
|
490 |
+
|
491 |
+
def process_uvr_task(
|
492 |
+
orig_song_path: str = "aud_test.mp3",
|
493 |
+
main_vocals: bool = False,
|
494 |
+
dereverb: bool = True,
|
495 |
+
song_id: str = "mdx", # folder output name
|
496 |
+
only_voiceless: bool = False,
|
497 |
+
remove_files_output_dir: bool = False,
|
498 |
+
):
|
499 |
+
|
500 |
+
device_base = "cuda" if torch.cuda.is_available() else "cpu"
|
501 |
+
logger.info(f"Device: {device_base}")
|
502 |
+
|
503 |
+
if remove_files_output_dir:
|
504 |
+
remove_directory_contents(output_dir)
|
505 |
+
|
506 |
+
with open(os.path.join(mdxnet_models_dir, "data.json")) as infile:
|
507 |
+
mdx_model_params = json.load(infile)
|
508 |
+
|
509 |
+
song_output_dir = os.path.join(output_dir, song_id)
|
510 |
+
create_directories(song_output_dir)
|
511 |
+
orig_song_path = convert_to_stereo_and_wav(orig_song_path)
|
512 |
+
|
513 |
+
logger.info(f"onnxruntime device >> {ort.get_device()}")
|
514 |
+
|
515 |
+
if only_voiceless:
|
516 |
+
logger.info("Voiceless Track Separation...")
|
517 |
+
return run_mdx(
|
518 |
+
mdx_model_params,
|
519 |
+
song_output_dir,
|
520 |
+
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Inst_HQ_4.onnx"),
|
521 |
+
orig_song_path,
|
522 |
+
suffix="Voiceless",
|
523 |
+
denoise=False,
|
524 |
+
keep_orig=True,
|
525 |
+
exclude_inversion=True,
|
526 |
+
device_base=device_base,
|
527 |
+
)
|
528 |
+
|
529 |
+
logger.info("Vocal Track Isolation...")
|
530 |
+
vocals_path, instrumentals_path = run_mdx(
|
531 |
+
mdx_model_params,
|
532 |
+
song_output_dir,
|
533 |
+
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Voc_FT.onnx"),
|
534 |
+
orig_song_path,
|
535 |
+
denoise=True,
|
536 |
+
keep_orig=True,
|
537 |
+
device_base=device_base,
|
538 |
+
)
|
539 |
+
|
540 |
+
if main_vocals:
|
541 |
+
random_sleep()
|
542 |
+
msg_main = "Main Voice Separation from Supporting Vocals..."
|
543 |
+
logger.info(msg_main)
|
544 |
+
gr.Info(msg_main)
|
545 |
+
try:
|
546 |
+
backup_vocals_path, main_vocals_path = run_mdx(
|
547 |
+
mdx_model_params,
|
548 |
+
song_output_dir,
|
549 |
+
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
|
550 |
+
vocals_path,
|
551 |
+
suffix="Backup",
|
552 |
+
invert_suffix="Main",
|
553 |
+
denoise=True,
|
554 |
+
device_base=device_base,
|
555 |
+
)
|
556 |
+
except Exception as e:
|
557 |
+
if "0:00:" in str(e):
|
558 |
+
gr.Info("Waiting 60 seconds for GPU quota")
|
559 |
+
time.sleep(56)
|
560 |
+
random_sleep()
|
561 |
+
backup_vocals_path, main_vocals_path = run_mdx(
|
562 |
+
mdx_model_params,
|
563 |
+
song_output_dir,
|
564 |
+
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
|
565 |
+
vocals_path,
|
566 |
+
suffix="Backup",
|
567 |
+
invert_suffix="Main",
|
568 |
+
denoise=True,
|
569 |
+
device_base=device_base,
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
raise e
|
573 |
+
else:
|
574 |
+
backup_vocals_path, main_vocals_path = None, vocals_path
|
575 |
+
|
576 |
+
if dereverb:
|
577 |
+
random_sleep()
|
578 |
+
msg_dereverb = "Vocal Clarity Enhancement through De-Reverberation..."
|
579 |
+
logger.info(msg_dereverb)
|
580 |
+
gr.Info(msg_dereverb)
|
581 |
+
try:
|
582 |
+
_, vocals_dereverb_path = run_mdx(
|
583 |
+
mdx_model_params,
|
584 |
+
song_output_dir,
|
585 |
+
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
|
586 |
+
main_vocals_path,
|
587 |
+
invert_suffix="DeReverb",
|
588 |
+
exclude_main=True,
|
589 |
+
denoise=True,
|
590 |
+
device_base=device_base,
|
591 |
+
)
|
592 |
+
except Exception as e:
|
593 |
+
if "0:00:" in str(e):
|
594 |
+
gr.Info("Waiting 60 seconds for GPU quota")
|
595 |
+
time.sleep(56)
|
596 |
+
random_sleep()
|
597 |
+
_, vocals_dereverb_path = run_mdx(
|
598 |
+
mdx_model_params,
|
599 |
+
song_output_dir,
|
600 |
+
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
|
601 |
+
main_vocals_path,
|
602 |
+
invert_suffix="DeReverb",
|
603 |
+
exclude_main=True,
|
604 |
+
denoise=True,
|
605 |
+
device_base=device_base,
|
606 |
+
)
|
607 |
+
else:
|
608 |
+
raise e
|
609 |
+
else:
|
610 |
+
vocals_dereverb_path = main_vocals_path
|
611 |
+
|
612 |
+
return (
|
613 |
+
vocals_path,
|
614 |
+
instrumentals_path,
|
615 |
+
backup_vocals_path,
|
616 |
+
main_vocals_path,
|
617 |
+
vocals_dereverb_path,
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
def sound_separate(media_file, stem, main, dereverb):
|
622 |
+
|
623 |
+
if not media_file:
|
624 |
+
raise ValueError("The audio pls")
|
625 |
+
|
626 |
+
if not stem:
|
627 |
+
raise ValueError("Select vocal or background...")
|
628 |
+
|
629 |
+
hash_audio = str(get_hash(media_file))
|
630 |
+
|
631 |
+
outputs = []
|
632 |
+
|
633 |
+
start_time = time.time()
|
634 |
+
|
635 |
+
if stem == "vocal":
|
636 |
+
try:
|
637 |
+
_, _, _, _, vocal_audio = process_uvr_task(
|
638 |
+
orig_song_path=media_file,
|
639 |
+
song_id=hash_audio+"mdx",
|
640 |
+
main_vocals=main,
|
641 |
+
dereverb=dereverb,
|
642 |
+
remove_files_output_dir=False,
|
643 |
+
)
|
644 |
+
outputs.append(vocal_audio)
|
645 |
+
except Exception as error:
|
646 |
+
gr.Info(str(error))
|
647 |
+
logger.error(str(error))
|
648 |
+
|
649 |
+
if stem == "background":
|
650 |
+
|
651 |
+
background_audio, _ = process_uvr_task(
|
652 |
+
orig_song_path=media_file,
|
653 |
+
song_id=hash_audio+"voiceless",
|
654 |
+
only_voiceless=True,
|
655 |
+
remove_files_output_dir=False,
|
656 |
+
)
|
657 |
+
# copy_files(background_audio, ".")
|
658 |
+
outputs.append(background_audio)
|
659 |
+
|
660 |
+
end_time = time.time()
|
661 |
+
execution_time = end_time - start_time
|
662 |
+
logger.info(f"Execution time: {execution_time} seconds")
|
663 |
+
|
664 |
+
if not outputs:
|
665 |
+
raise Exception("Error in sound separate")
|
666 |
+
|
667 |
+
return outputs
|
668 |
+
|
669 |
+
|
670 |
+
def audio_conf():
|
671 |
+
return gr.File(
|
672 |
+
label="Audio file",
|
673 |
+
# file_count="multiple",
|
674 |
+
type="filepath",
|
675 |
+
container=True,
|
676 |
+
)
|
677 |
+
|
678 |
+
|
679 |
+
def stem_conf():
|
680 |
+
return gr.Radio(
|
681 |
+
choices=["vocal", "background"],
|
682 |
+
value="vocal",
|
683 |
+
label="Vocal",
|
684 |
+
# info="",
|
685 |
+
)
|
686 |
+
|
687 |
+
|
688 |
+
def main_conf():
|
689 |
+
return gr.Checkbox(
|
690 |
+
False,
|
691 |
+
label="Main",
|
692 |
+
# info="",
|
693 |
+
)
|
694 |
+
|
695 |
+
|
696 |
+
def dereverb_conf():
|
697 |
+
return gr.Checkbox(
|
698 |
+
False,
|
699 |
+
label="Dereverb",
|
700 |
+
# info="",
|
701 |
+
visible=True,
|
702 |
+
)
|
703 |
+
|
704 |
+
|
705 |
+
def button_conf():
|
706 |
+
return gr.Button(
|
707 |
+
"Inference",
|
708 |
+
variant="primary",
|
709 |
+
)
|
710 |
+
|
711 |
+
|
712 |
+
def output_conf():
|
713 |
+
return gr.File(
|
714 |
+
label="Result",
|
715 |
+
file_count="multiple",
|
716 |
+
interactive=False,
|
717 |
+
)
|
718 |
+
|
719 |
+
|
720 |
+
def show_vocal_components(input_bool):
|
721 |
+
param = True if input_bool == "vocal" else False
|
722 |
+
return gr.update(visible=param), gr.update(
|
723 |
+
visible=param
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
def get_gui(theme):
|
728 |
+
with gr.Blocks(theme=theme) as app:
|
729 |
+
gr.Markdown(title)
|
730 |
+
gr.Markdown(description)
|
731 |
+
|
732 |
+
aud = audio_conf()
|
733 |
+
|
734 |
+
with gr.Column():
|
735 |
+
with gr.Row():
|
736 |
+
stem_gui = stem_conf()
|
737 |
+
|
738 |
+
|
739 |
+
with gr.Column():
|
740 |
+
with gr.Row():
|
741 |
+
main_gui = main_conf()
|
742 |
+
dereverb_gui = dereverb_conf()
|
743 |
+
|
744 |
+
stem_gui.change(
|
745 |
+
show_vocal_components,
|
746 |
+
[stem_gui],
|
747 |
+
[main_gui, dereverb_gui],
|
748 |
+
)
|
749 |
+
|
750 |
+
button_base = button_conf()
|
751 |
+
output_base = output_conf()
|
752 |
+
|
753 |
+
button_base.click(
|
754 |
+
sound_separate,
|
755 |
+
inputs=[
|
756 |
+
aud,
|
757 |
+
stem_gui,
|
758 |
+
main_gui,
|
759 |
+
dereverb_gui,
|
760 |
+
],
|
761 |
+
outputs=[output_base],
|
762 |
+
)
|
763 |
+
|
764 |
+
gr.Examples(
|
765 |
+
examples=[
|
766 |
+
[
|
767 |
+
"./test.mp3",
|
768 |
+
"vocal",
|
769 |
+
False,
|
770 |
+
False,
|
771 |
+
],
|
772 |
+
],
|
773 |
+
fn=sound_separate,
|
774 |
+
inputs=[
|
775 |
+
aud,
|
776 |
+
stem_gui,
|
777 |
+
main_gui,
|
778 |
+
dereverb_gui,
|
779 |
+
],
|
780 |
+
outputs=[output_base],
|
781 |
+
cache_examples=False,
|
782 |
+
)
|
783 |
+
|
784 |
+
return app
|
785 |
+
|
786 |
+
|
787 |
+
if __name__ == "__main__":
|
788 |
+
|
789 |
+
for id_model in UVR_MODELS:
|
790 |
+
download_manager(
|
791 |
+
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
|
792 |
+
)
|
793 |
+
|
794 |
+
app = get_gui(theme)
|
795 |
+
|
796 |
+
app.queue(default_concurrency_limit=40)
|
797 |
+
|
798 |
+
app.launch(
|
799 |
+
max_threads=40,
|
800 |
+
share=False,
|
801 |
+
show_error=True,
|
802 |
+
quiet=False,
|
803 |
+
debug=False,
|
804 |
+
)
|
805 |
+
|
mdx_models/data.json
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"0ddfc0eb5792638ad5dc27850236c246": {
|
3 |
+
"compensate": 1.035,
|
4 |
+
"mdx_dim_f_set": 2048,
|
5 |
+
"mdx_dim_t_set": 8,
|
6 |
+
"mdx_n_fft_scale_set": 6144,
|
7 |
+
"primary_stem": "Vocals"
|
8 |
+
},
|
9 |
+
"26d308f91f3423a67dc69a6d12a8793d": {
|
10 |
+
"compensate": 1.035,
|
11 |
+
"mdx_dim_f_set": 2048,
|
12 |
+
"mdx_dim_t_set": 9,
|
13 |
+
"mdx_n_fft_scale_set": 8192,
|
14 |
+
"primary_stem": "Other"
|
15 |
+
},
|
16 |
+
"2cdd429caac38f0194b133884160f2c6": {
|
17 |
+
"compensate": 1.045,
|
18 |
+
"mdx_dim_f_set": 3072,
|
19 |
+
"mdx_dim_t_set": 8,
|
20 |
+
"mdx_n_fft_scale_set": 7680,
|
21 |
+
"primary_stem": "Instrumental"
|
22 |
+
},
|
23 |
+
"2f5501189a2f6db6349916fabe8c90de": {
|
24 |
+
"compensate": 1.035,
|
25 |
+
"mdx_dim_f_set": 2048,
|
26 |
+
"mdx_dim_t_set": 8,
|
27 |
+
"mdx_n_fft_scale_set": 6144,
|
28 |
+
"primary_stem": "Vocals"
|
29 |
+
},
|
30 |
+
"398580b6d5d973af3120df54cee6759d": {
|
31 |
+
"compensate": 1.75,
|
32 |
+
"mdx_dim_f_set": 3072,
|
33 |
+
"mdx_dim_t_set": 8,
|
34 |
+
"mdx_n_fft_scale_set": 7680,
|
35 |
+
"primary_stem": "Vocals"
|
36 |
+
},
|
37 |
+
"488b3e6f8bd3717d9d7c428476be2d75": {
|
38 |
+
"compensate": 1.035,
|
39 |
+
"mdx_dim_f_set": 3072,
|
40 |
+
"mdx_dim_t_set": 8,
|
41 |
+
"mdx_n_fft_scale_set": 7680,
|
42 |
+
"primary_stem": "Instrumental"
|
43 |
+
},
|
44 |
+
"4910e7827f335048bdac11fa967772f9": {
|
45 |
+
"compensate": 1.035,
|
46 |
+
"mdx_dim_f_set": 2048,
|
47 |
+
"mdx_dim_t_set": 7,
|
48 |
+
"mdx_n_fft_scale_set": 4096,
|
49 |
+
"primary_stem": "Drums"
|
50 |
+
},
|
51 |
+
"53c4baf4d12c3e6c3831bb8f5b532b93": {
|
52 |
+
"compensate": 1.043,
|
53 |
+
"mdx_dim_f_set": 3072,
|
54 |
+
"mdx_dim_t_set": 8,
|
55 |
+
"mdx_n_fft_scale_set": 7680,
|
56 |
+
"primary_stem": "Vocals"
|
57 |
+
},
|
58 |
+
"5d343409ef0df48c7d78cce9f0106781": {
|
59 |
+
"compensate": 1.075,
|
60 |
+
"mdx_dim_f_set": 3072,
|
61 |
+
"mdx_dim_t_set": 8,
|
62 |
+
"mdx_n_fft_scale_set": 7680,
|
63 |
+
"primary_stem": "Vocals"
|
64 |
+
},
|
65 |
+
"5f6483271e1efb9bfb59e4a3e6d4d098": {
|
66 |
+
"compensate": 1.035,
|
67 |
+
"mdx_dim_f_set": 2048,
|
68 |
+
"mdx_dim_t_set": 9,
|
69 |
+
"mdx_n_fft_scale_set": 6144,
|
70 |
+
"primary_stem": "Vocals"
|
71 |
+
},
|
72 |
+
"65ab5919372a128e4167f5e01a8fda85": {
|
73 |
+
"compensate": 1.035,
|
74 |
+
"mdx_dim_f_set": 2048,
|
75 |
+
"mdx_dim_t_set": 8,
|
76 |
+
"mdx_n_fft_scale_set": 8192,
|
77 |
+
"primary_stem": "Other"
|
78 |
+
},
|
79 |
+
"6703e39f36f18aa7855ee1047765621d": {
|
80 |
+
"compensate": 1.035,
|
81 |
+
"mdx_dim_f_set": 2048,
|
82 |
+
"mdx_dim_t_set": 9,
|
83 |
+
"mdx_n_fft_scale_set": 16384,
|
84 |
+
"primary_stem": "Bass"
|
85 |
+
},
|
86 |
+
"6b31de20e84392859a3d09d43f089515": {
|
87 |
+
"compensate": 1.035,
|
88 |
+
"mdx_dim_f_set": 2048,
|
89 |
+
"mdx_dim_t_set": 8,
|
90 |
+
"mdx_n_fft_scale_set": 6144,
|
91 |
+
"primary_stem": "Vocals"
|
92 |
+
},
|
93 |
+
"867595e9de46f6ab699008295df62798": {
|
94 |
+
"compensate": 1.03,
|
95 |
+
"mdx_dim_f_set": 3072,
|
96 |
+
"mdx_dim_t_set": 8,
|
97 |
+
"mdx_n_fft_scale_set": 7680,
|
98 |
+
"primary_stem": "Vocals"
|
99 |
+
},
|
100 |
+
"a3cd63058945e777505c01d2507daf37": {
|
101 |
+
"compensate": 1.03,
|
102 |
+
"mdx_dim_f_set": 2048,
|
103 |
+
"mdx_dim_t_set": 8,
|
104 |
+
"mdx_n_fft_scale_set": 6144,
|
105 |
+
"primary_stem": "Vocals"
|
106 |
+
},
|
107 |
+
"b33d9b3950b6cbf5fe90a32608924700": {
|
108 |
+
"compensate": 1.03,
|
109 |
+
"mdx_dim_f_set": 3072,
|
110 |
+
"mdx_dim_t_set": 8,
|
111 |
+
"mdx_n_fft_scale_set": 7680,
|
112 |
+
"primary_stem": "Vocals"
|
113 |
+
},
|
114 |
+
"c3b29bdce8c4fa17ec609e16220330ab": {
|
115 |
+
"compensate": 1.035,
|
116 |
+
"mdx_dim_f_set": 2048,
|
117 |
+
"mdx_dim_t_set": 8,
|
118 |
+
"mdx_n_fft_scale_set": 16384,
|
119 |
+
"primary_stem": "Bass"
|
120 |
+
},
|
121 |
+
"ceed671467c1f64ebdfac8a2490d0d52": {
|
122 |
+
"compensate": 1.035,
|
123 |
+
"mdx_dim_f_set": 3072,
|
124 |
+
"mdx_dim_t_set": 8,
|
125 |
+
"mdx_n_fft_scale_set": 7680,
|
126 |
+
"primary_stem": "Instrumental"
|
127 |
+
},
|
128 |
+
"d2a1376f310e4f7fa37fb9b5774eb701": {
|
129 |
+
"compensate": 1.035,
|
130 |
+
"mdx_dim_f_set": 3072,
|
131 |
+
"mdx_dim_t_set": 8,
|
132 |
+
"mdx_n_fft_scale_set": 7680,
|
133 |
+
"primary_stem": "Instrumental"
|
134 |
+
},
|
135 |
+
"d7bff498db9324db933d913388cba6be": {
|
136 |
+
"compensate": 1.035,
|
137 |
+
"mdx_dim_f_set": 2048,
|
138 |
+
"mdx_dim_t_set": 8,
|
139 |
+
"mdx_n_fft_scale_set": 6144,
|
140 |
+
"primary_stem": "Vocals"
|
141 |
+
},
|
142 |
+
"d94058f8c7f1fae4164868ae8ae66b20": {
|
143 |
+
"compensate": 1.035,
|
144 |
+
"mdx_dim_f_set": 2048,
|
145 |
+
"mdx_dim_t_set": 8,
|
146 |
+
"mdx_n_fft_scale_set": 6144,
|
147 |
+
"primary_stem": "Vocals"
|
148 |
+
},
|
149 |
+
"dc41ede5961d50f277eb846db17f5319": {
|
150 |
+
"compensate": 1.035,
|
151 |
+
"mdx_dim_f_set": 2048,
|
152 |
+
"mdx_dim_t_set": 9,
|
153 |
+
"mdx_n_fft_scale_set": 4096,
|
154 |
+
"primary_stem": "Drums"
|
155 |
+
},
|
156 |
+
"e5572e58abf111f80d8241d2e44e7fa4": {
|
157 |
+
"compensate": 1.028,
|
158 |
+
"mdx_dim_f_set": 3072,
|
159 |
+
"mdx_dim_t_set": 8,
|
160 |
+
"mdx_n_fft_scale_set": 7680,
|
161 |
+
"primary_stem": "Instrumental"
|
162 |
+
},
|
163 |
+
"e7324c873b1f615c35c1967f912db92a": {
|
164 |
+
"compensate": 1.03,
|
165 |
+
"mdx_dim_f_set": 3072,
|
166 |
+
"mdx_dim_t_set": 8,
|
167 |
+
"mdx_n_fft_scale_set": 7680,
|
168 |
+
"primary_stem": "Vocals"
|
169 |
+
},
|
170 |
+
"1c56ec0224f1d559c42fd6fd2a67b154": {
|
171 |
+
"compensate": 1.025,
|
172 |
+
"mdx_dim_f_set": 2048,
|
173 |
+
"mdx_dim_t_set": 8,
|
174 |
+
"mdx_n_fft_scale_set": 5120,
|
175 |
+
"primary_stem": "Instrumental"
|
176 |
+
},
|
177 |
+
"f2df6d6863d8f435436d8b561594ff49": {
|
178 |
+
"compensate": 1.035,
|
179 |
+
"mdx_dim_f_set": 3072,
|
180 |
+
"mdx_dim_t_set": 8,
|
181 |
+
"mdx_n_fft_scale_set": 7680,
|
182 |
+
"primary_stem": "Instrumental"
|
183 |
+
},
|
184 |
+
"b06327a00d5e5fbc7d96e1781bbdb596": {
|
185 |
+
"compensate": 1.035,
|
186 |
+
"mdx_dim_f_set": 3072,
|
187 |
+
"mdx_dim_t_set": 8,
|
188 |
+
"mdx_n_fft_scale_set": 6144,
|
189 |
+
"primary_stem": "Instrumental"
|
190 |
+
},
|
191 |
+
"94ff780b977d3ca07c7a343dab2e25dd": {
|
192 |
+
"compensate": 1.039,
|
193 |
+
"mdx_dim_f_set": 3072,
|
194 |
+
"mdx_dim_t_set": 8,
|
195 |
+
"mdx_n_fft_scale_set": 6144,
|
196 |
+
"primary_stem": "Instrumental"
|
197 |
+
},
|
198 |
+
"73492b58195c3b52d34590d5474452f6": {
|
199 |
+
"compensate": 1.043,
|
200 |
+
"mdx_dim_f_set": 3072,
|
201 |
+
"mdx_dim_t_set": 8,
|
202 |
+
"mdx_n_fft_scale_set": 7680,
|
203 |
+
"primary_stem": "Vocals"
|
204 |
+
},
|
205 |
+
"970b3f9492014d18fefeedfe4773cb42": {
|
206 |
+
"compensate": 1.009,
|
207 |
+
"mdx_dim_f_set": 3072,
|
208 |
+
"mdx_dim_t_set": 8,
|
209 |
+
"mdx_n_fft_scale_set": 7680,
|
210 |
+
"primary_stem": "Vocals"
|
211 |
+
},
|
212 |
+
"1d64a6d2c30f709b8c9b4ce1366d96ee": {
|
213 |
+
"compensate": 1.035,
|
214 |
+
"mdx_dim_f_set": 2048,
|
215 |
+
"mdx_dim_t_set": 8,
|
216 |
+
"mdx_n_fft_scale_set": 5120,
|
217 |
+
"primary_stem": "Instrumental"
|
218 |
+
},
|
219 |
+
"203f2a3955221b64df85a41af87cf8f0": {
|
220 |
+
"compensate": 1.035,
|
221 |
+
"mdx_dim_f_set": 3072,
|
222 |
+
"mdx_dim_t_set": 8,
|
223 |
+
"mdx_n_fft_scale_set": 6144,
|
224 |
+
"primary_stem": "Instrumental"
|
225 |
+
},
|
226 |
+
"291c2049608edb52648b96e27eb80e95": {
|
227 |
+
"compensate": 1.035,
|
228 |
+
"mdx_dim_f_set": 3072,
|
229 |
+
"mdx_dim_t_set": 8,
|
230 |
+
"mdx_n_fft_scale_set": 6144,
|
231 |
+
"primary_stem": "Instrumental"
|
232 |
+
},
|
233 |
+
"ead8d05dab12ec571d67549b3aab03fc": {
|
234 |
+
"compensate": 1.035,
|
235 |
+
"mdx_dim_f_set": 3072,
|
236 |
+
"mdx_dim_t_set": 8,
|
237 |
+
"mdx_n_fft_scale_set": 6144,
|
238 |
+
"primary_stem": "Instrumental"
|
239 |
+
},
|
240 |
+
"cc63408db3d80b4d85b0287d1d7c9632": {
|
241 |
+
"compensate": 1.033,
|
242 |
+
"mdx_dim_f_set": 3072,
|
243 |
+
"mdx_dim_t_set": 8,
|
244 |
+
"mdx_n_fft_scale_set": 6144,
|
245 |
+
"primary_stem": "Instrumental"
|
246 |
+
},
|
247 |
+
"cd5b2989ad863f116c855db1dfe24e39": {
|
248 |
+
"compensate": 1.035,
|
249 |
+
"mdx_dim_f_set": 3072,
|
250 |
+
"mdx_dim_t_set": 9,
|
251 |
+
"mdx_n_fft_scale_set": 6144,
|
252 |
+
"primary_stem": "Other"
|
253 |
+
},
|
254 |
+
"55657dd70583b0fedfba5f67df11d711": {
|
255 |
+
"compensate": 1.022,
|
256 |
+
"mdx_dim_f_set": 3072,
|
257 |
+
"mdx_dim_t_set": 8,
|
258 |
+
"mdx_n_fft_scale_set": 6144,
|
259 |
+
"primary_stem": "Instrumental"
|
260 |
+
},
|
261 |
+
"b6bccda408a436db8500083ef3491e8b": {
|
262 |
+
"compensate": 1.02,
|
263 |
+
"mdx_dim_f_set": 3072,
|
264 |
+
"mdx_dim_t_set": 8,
|
265 |
+
"mdx_n_fft_scale_set": 7680,
|
266 |
+
"primary_stem": "Instrumental"
|
267 |
+
},
|
268 |
+
"8a88db95c7fb5dbe6a095ff2ffb428b1": {
|
269 |
+
"compensate": 1.026,
|
270 |
+
"mdx_dim_f_set": 2048,
|
271 |
+
"mdx_dim_t_set": 8,
|
272 |
+
"mdx_n_fft_scale_set": 5120,
|
273 |
+
"primary_stem": "Instrumental"
|
274 |
+
},
|
275 |
+
"b78da4afc6512f98e4756f5977f5c6b9": {
|
276 |
+
"compensate": 1.021,
|
277 |
+
"mdx_dim_f_set": 3072,
|
278 |
+
"mdx_dim_t_set": 8,
|
279 |
+
"mdx_n_fft_scale_set": 7680,
|
280 |
+
"primary_stem": "Instrumental"
|
281 |
+
},
|
282 |
+
"77d07b2667ddf05b9e3175941b4454a0": {
|
283 |
+
"compensate": 1.021,
|
284 |
+
"mdx_dim_f_set": 3072,
|
285 |
+
"mdx_dim_t_set": 8,
|
286 |
+
"mdx_n_fft_scale_set": 7680,
|
287 |
+
"primary_stem": "Vocals"
|
288 |
+
},
|
289 |
+
"0f2a6bc5b49d87d64728ee40e23bceb1": {
|
290 |
+
"compensate": 1.019,
|
291 |
+
"mdx_dim_f_set": 2560,
|
292 |
+
"mdx_dim_t_set": 8,
|
293 |
+
"mdx_n_fft_scale_set": 5120,
|
294 |
+
"primary_stem": "Instrumental"
|
295 |
+
},
|
296 |
+
"b02be2d198d4968a121030cf8950b492": {
|
297 |
+
"compensate": 1.020,
|
298 |
+
"mdx_dim_f_set": 2560,
|
299 |
+
"mdx_dim_t_set": 8,
|
300 |
+
"mdx_n_fft_scale_set": 5120,
|
301 |
+
"primary_stem": "No Crowd"
|
302 |
+
},
|
303 |
+
"2154254ee89b2945b97a7efed6e88820": {
|
304 |
+
"config_yaml": "model_2_stem_061321.yaml"
|
305 |
+
},
|
306 |
+
"063aadd735d58150722926dcbf5852a9": {
|
307 |
+
"config_yaml": "model_2_stem_061321.yaml"
|
308 |
+
},
|
309 |
+
"fe96801369f6a148df2720f5ced88c19": {
|
310 |
+
"config_yaml": "model3.yaml"
|
311 |
+
},
|
312 |
+
"02e8b226f85fb566e5db894b9931c640": {
|
313 |
+
"config_yaml": "model2.yaml"
|
314 |
+
},
|
315 |
+
"e3de6d861635ab9c1d766149edd680d6": {
|
316 |
+
"config_yaml": "model1.yaml"
|
317 |
+
},
|
318 |
+
"3f2936c554ab73ce2e396d54636bd373": {
|
319 |
+
"config_yaml": "modelB.yaml"
|
320 |
+
},
|
321 |
+
"890d0f6f82d7574bca741a9e8bcb8168": {
|
322 |
+
"config_yaml": "modelB.yaml"
|
323 |
+
},
|
324 |
+
"63a3cb8c37c474681049be4ad1ba8815": {
|
325 |
+
"config_yaml": "modelB.yaml"
|
326 |
+
},
|
327 |
+
"a7fc5d719743c7fd6b61bd2b4d48b9f0": {
|
328 |
+
"config_yaml": "modelA.yaml"
|
329 |
+
},
|
330 |
+
"3567f3dee6e77bf366fcb1c7b8bc3745": {
|
331 |
+
"config_yaml": "modelA.yaml"
|
332 |
+
},
|
333 |
+
"a28f4d717bd0d34cd2ff7a3b0a3d065e": {
|
334 |
+
"config_yaml": "modelA.yaml"
|
335 |
+
},
|
336 |
+
"c9971a18da20911822593dc81caa8be9": {
|
337 |
+
"config_yaml": "sndfx.yaml"
|
338 |
+
},
|
339 |
+
"57d94d5ed705460d21c75a5ac829a605": {
|
340 |
+
"config_yaml": "sndfx.yaml"
|
341 |
+
},
|
342 |
+
"e7a25f8764f25a52c1b96c4946e66ba2": {
|
343 |
+
"config_yaml": "sndfx.yaml"
|
344 |
+
},
|
345 |
+
"104081d24e37217086ce5fde09147ee1": {
|
346 |
+
"config_yaml": "model_2_stem_061321.yaml"
|
347 |
+
},
|
348 |
+
"1e6165b601539f38d0a9330f3facffeb": {
|
349 |
+
"config_yaml": "model_2_stem_061321.yaml"
|
350 |
+
},
|
351 |
+
"fe0108464ce0d8271be5ab810891bd7c": {
|
352 |
+
"config_yaml": "model_2_stem_full_band.yaml"
|
353 |
+
}
|
354 |
+
}
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
soundfile
|
2 |
+
librosa
|
3 |
+
torch==2.2.0
|
test.mp3
ADDED
Binary file (51.9 kB). View file
|
|
utils.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, zipfile, shutil, subprocess, shlex, sys # noqa
|
2 |
+
from urllib.parse import urlparse
|
3 |
+
import re
|
4 |
+
import logging
|
5 |
+
|
6 |
+
|
7 |
+
def load_file_from_url(
|
8 |
+
url: str,
|
9 |
+
model_dir: str,
|
10 |
+
file_name: str | None = None,
|
11 |
+
overwrite: bool = False,
|
12 |
+
progress: bool = True,
|
13 |
+
) -> str:
|
14 |
+
"""Download a file from `url` into `model_dir`,
|
15 |
+
using the file present if possible.
|
16 |
+
|
17 |
+
Returns the path to the downloaded file.
|
18 |
+
"""
|
19 |
+
os.makedirs(model_dir, exist_ok=True)
|
20 |
+
if not file_name:
|
21 |
+
parts = urlparse(url)
|
22 |
+
file_name = os.path.basename(parts.path)
|
23 |
+
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
|
24 |
+
|
25 |
+
# Overwrite
|
26 |
+
if os.path.exists(cached_file):
|
27 |
+
if overwrite or os.path.getsize(cached_file) == 0:
|
28 |
+
remove_files(cached_file)
|
29 |
+
|
30 |
+
# Download
|
31 |
+
if not os.path.exists(cached_file):
|
32 |
+
logger.info(f'Downloading: "{url}" to {cached_file}\n')
|
33 |
+
from torch.hub import download_url_to_file
|
34 |
+
|
35 |
+
download_url_to_file(url, cached_file, progress=progress)
|
36 |
+
else:
|
37 |
+
logger.debug(cached_file)
|
38 |
+
|
39 |
+
return cached_file
|
40 |
+
|
41 |
+
|
42 |
+
def friendly_name(file: str):
|
43 |
+
if file.startswith("http"):
|
44 |
+
file = urlparse(file).path
|
45 |
+
|
46 |
+
file = os.path.basename(file)
|
47 |
+
model_name, extension = os.path.splitext(file)
|
48 |
+
return model_name, extension
|
49 |
+
|
50 |
+
|
51 |
+
def download_manager(
|
52 |
+
url: str,
|
53 |
+
path: str,
|
54 |
+
extension: str = "",
|
55 |
+
overwrite: bool = False,
|
56 |
+
progress: bool = True,
|
57 |
+
):
|
58 |
+
url = url.strip()
|
59 |
+
|
60 |
+
name, ext = friendly_name(url)
|
61 |
+
name += ext if not extension else f".{extension}"
|
62 |
+
|
63 |
+
if url.startswith("http"):
|
64 |
+
filename = load_file_from_url(
|
65 |
+
url=url,
|
66 |
+
model_dir=path,
|
67 |
+
file_name=name,
|
68 |
+
overwrite=overwrite,
|
69 |
+
progress=progress,
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
filename = path
|
73 |
+
|
74 |
+
return filename
|
75 |
+
|
76 |
+
|
77 |
+
def remove_files(file_list):
|
78 |
+
if isinstance(file_list, str):
|
79 |
+
file_list = [file_list]
|
80 |
+
|
81 |
+
for file in file_list:
|
82 |
+
if os.path.exists(file):
|
83 |
+
os.remove(file)
|
84 |
+
|
85 |
+
|
86 |
+
def remove_directory_contents(directory_path):
|
87 |
+
"""
|
88 |
+
Removes all files and subdirectories within a directory.
|
89 |
+
|
90 |
+
Parameters:
|
91 |
+
directory_path (str): Path to the directory whose
|
92 |
+
contents need to be removed.
|
93 |
+
"""
|
94 |
+
if os.path.exists(directory_path):
|
95 |
+
for filename in os.listdir(directory_path):
|
96 |
+
file_path = os.path.join(directory_path, filename)
|
97 |
+
try:
|
98 |
+
if os.path.isfile(file_path):
|
99 |
+
os.remove(file_path)
|
100 |
+
elif os.path.isdir(file_path):
|
101 |
+
shutil.rmtree(file_path)
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Failed to delete {file_path}. Reason: {e}")
|
104 |
+
logger.info(f"Content in '{directory_path}' removed.")
|
105 |
+
else:
|
106 |
+
logger.error(f"Directory '{directory_path}' does not exist.")
|
107 |
+
|
108 |
+
|
109 |
+
# Create directory if not exists
|
110 |
+
def create_directories(directory_path):
|
111 |
+
if isinstance(directory_path, str):
|
112 |
+
directory_path = [directory_path]
|
113 |
+
for one_dir_path in directory_path:
|
114 |
+
if not os.path.exists(one_dir_path):
|
115 |
+
os.makedirs(one_dir_path)
|
116 |
+
logger.debug(f"Directory '{one_dir_path}' created.")
|
117 |
+
|
118 |
+
|
119 |
+
def setup_logger(name_log):
|
120 |
+
logger = logging.getLogger(name_log)
|
121 |
+
logger.setLevel(logging.INFO)
|
122 |
+
|
123 |
+
_default_handler = logging.StreamHandler() # Set sys.stderr as stream.
|
124 |
+
_default_handler.flush = sys.stderr.flush
|
125 |
+
logger.addHandler(_default_handler)
|
126 |
+
|
127 |
+
logger.propagate = False
|
128 |
+
|
129 |
+
handlers = logger.handlers
|
130 |
+
|
131 |
+
for handler in handlers:
|
132 |
+
formatter = logging.Formatter("[%(levelname)s] >> %(message)s")
|
133 |
+
handler.setFormatter(formatter)
|
134 |
+
|
135 |
+
# logger.handlers
|
136 |
+
|
137 |
+
return logger
|
138 |
+
|
139 |
+
|
140 |
+
logger = setup_logger("ss")
|
141 |
+
logger.setLevel(logging.INFO)
|
142 |
+
|