Spaces:
Paused
Paused
Upload 2 files
Browse files
app.py
CHANGED
@@ -86,18 +86,31 @@ def video_app():
|
|
86 |
value=64,
|
87 |
label="Points per Batch",
|
88 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
seg_automask_video_predict = gr.Button(value="Generator")
|
91 |
with gr.Column():
|
92 |
output_video = gr.Video()
|
93 |
|
94 |
seg_automask_video_predict.click(
|
95 |
-
fn=SegAutoMaskGenerator().
|
96 |
inputs=[
|
97 |
seg_automask_video_file,
|
98 |
seg_automask_video_model_type,
|
99 |
seg_automask_video_points_per_side,
|
100 |
seg_automask_video_points_per_batch,
|
|
|
|
|
101 |
],
|
102 |
outputs=[output_video],
|
103 |
)
|
|
|
86 |
value=64,
|
87 |
label="Points per Batch",
|
88 |
)
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
seg_automask_video_min_area = gr.Number(
|
92 |
+
value=1000,
|
93 |
+
label="Min Area",
|
94 |
+
)
|
95 |
+
|
96 |
+
seg_automask_video_max_area = gr.Number(
|
97 |
+
value=10000,
|
98 |
+
label="Max Area",
|
99 |
+
)
|
100 |
|
101 |
seg_automask_video_predict = gr.Button(value="Generator")
|
102 |
with gr.Column():
|
103 |
output_video = gr.Video()
|
104 |
|
105 |
seg_automask_video_predict.click(
|
106 |
+
fn=SegAutoMaskGenerator().save_video,
|
107 |
inputs=[
|
108 |
seg_automask_video_file,
|
109 |
seg_automask_video_model_type,
|
110 |
seg_automask_video_points_per_side,
|
111 |
seg_automask_video_points_per_batch,
|
112 |
+
seg_automask_video_min_area,
|
113 |
+
seg_automask_video_max_area,
|
114 |
],
|
115 |
outputs=[output_video],
|
116 |
)
|
demo.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from metaseg import SamAutomaticMaskGenerator, sam_model_registry
|
6 |
+
from metaseg.utils.file import download_model
|
7 |
+
|
8 |
+
|
9 |
+
class SegAutoMaskGenerator:
|
10 |
+
def __init__(self):
|
11 |
+
self.model = None
|
12 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
def load_model(self, model_type):
|
15 |
+
if self.model is None:
|
16 |
+
model_path = download_model(model_type)
|
17 |
+
model = sam_model_registry[model_type](checkpoint=model_path)
|
18 |
+
model.to(device=self.device)
|
19 |
+
self.model = model
|
20 |
+
|
21 |
+
return self.model
|
22 |
+
|
23 |
+
def load_image(self, image_path):
|
24 |
+
image = cv2.imread(image_path)
|
25 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
26 |
+
return image
|
27 |
+
|
28 |
+
def load_video(self, video_path):
|
29 |
+
cap = cv2.VideoCapture(video_path)
|
30 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
31 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
32 |
+
fourcc = cv2.VideoWriter_fourcc(*"XVID")
|
33 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
34 |
+
out = cv2.VideoWriter("output.mp4", fourcc, fps, (frame_width, frame_height))
|
35 |
+
|
36 |
+
return cap, out
|
37 |
+
|
38 |
+
def predict(self, frame, model_type, points_per_side, points_per_batch):
|
39 |
+
model = self.load_model(model_type)
|
40 |
+
mask_generator = SamAutomaticMaskGenerator(
|
41 |
+
model, points_per_side=points_per_side, points_per_batch=points_per_batch
|
42 |
+
)
|
43 |
+
masks = mask_generator.generate(frame)
|
44 |
+
|
45 |
+
return frame, masks
|
46 |
+
|
47 |
+
def save_image(self, source, model_type, points_per_side, points_per_batch):
|
48 |
+
read_image = self.load_image(source)
|
49 |
+
image, anns = self.predict(read_image, model_type, points_per_side, points_per_batch)
|
50 |
+
if len(anns) == 0:
|
51 |
+
return
|
52 |
+
|
53 |
+
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
|
54 |
+
mask_image = np.zeros((anns[0]["segmentation"].shape[0], anns[0]["segmentation"].shape[1], 3), dtype=np.uint8)
|
55 |
+
colors = np.random.randint(0, 255, size=(256, 3), dtype=np.uint8)
|
56 |
+
for i, ann in enumerate(sorted_anns):
|
57 |
+
m = ann["segmentation"]
|
58 |
+
img = np.ones((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
59 |
+
color = colors[i % 256]
|
60 |
+
for i in range(3):
|
61 |
+
img[:, :, 0] = color[0]
|
62 |
+
img[:, :, 1] = color[1]
|
63 |
+
img[:, :, 2] = color[2]
|
64 |
+
img = cv2.bitwise_and(img, img, mask=m.astype(np.uint8))
|
65 |
+
img = cv2.addWeighted(img, 0.35, np.zeros_like(img), 0.65, 0)
|
66 |
+
mask_image = cv2.add(mask_image, img)
|
67 |
+
|
68 |
+
combined_mask = cv2.add(image, mask_image)
|
69 |
+
cv2.imwrite("output.jpg", combined_mask)
|
70 |
+
|
71 |
+
return "output.jpg"
|
72 |
+
|
73 |
+
def save_video(self, source, model_type, points_per_side, points_per_batch, min_area, max_area):
|
74 |
+
cap, out = self.load_video(source)
|
75 |
+
colors = np.random.randint(0, 255, size=(256, 3), dtype=np.uint8)
|
76 |
+
|
77 |
+
while True:
|
78 |
+
ret, frame = cap.read()
|
79 |
+
if not ret:
|
80 |
+
break
|
81 |
+
|
82 |
+
image, anns = self.predict(frame, model_type, points_per_side, points_per_batch)
|
83 |
+
if len(anns) == 0:
|
84 |
+
continue
|
85 |
+
|
86 |
+
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
|
87 |
+
mask_image = np.zeros(
|
88 |
+
(anns[0]["segmentation"].shape[0], anns[0]["segmentation"].shape[1], 3), dtype=np.uint8
|
89 |
+
)
|
90 |
+
|
91 |
+
for i, ann in enumerate(sorted_anns):
|
92 |
+
if max_area > ann["area"] > min_area:
|
93 |
+
m = ann["segmentation"]
|
94 |
+
color = colors[i % 256] # Her nesne için farklı bir renk kullan
|
95 |
+
img = np.zeros((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
96 |
+
img[:, :, 0] = color[0]
|
97 |
+
img[:, :, 1] = color[1]
|
98 |
+
img[:, :, 2] = color[2]
|
99 |
+
img = cv2.bitwise_and(img, img, mask=m.astype(np.uint8))
|
100 |
+
img = cv2.addWeighted(img, 0.35, np.zeros_like(img), 0.65, 0)
|
101 |
+
mask_image = cv2.add(mask_image, img)
|
102 |
+
|
103 |
+
combined_mask = cv2.add(frame, mask_image)
|
104 |
+
out.write(combined_mask)
|
105 |
+
|
106 |
+
out.release()
|
107 |
+
cap.release()
|
108 |
+
cv2.destroyAllWindows()
|
109 |
+
|
110 |
+
return "output.mp4"
|