Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -1,9 +1,71 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from whisperplus.pipelines.whisper import SpeechToTextPipeline
|
4 |
from whisperplus.utils.download_utils import download_and_convert_to_mp3
|
5 |
-
from whisperplus.utils.text_utils import format_speech_to_dialogue
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def youtube_url_to_text(url, model_id, language_choice):
|
9 |
"""
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
3 |
from whisperplus.utils.download_utils import download_and_convert_to_mp3
|
|
|
4 |
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
+
|
12 |
+
|
13 |
+
class SpeechToTextPipeline:
|
14 |
+
"""Class for converting audio to text using a pre-trained speech recognition model."""
|
15 |
+
|
16 |
+
def __init__(self, model_id: str = "openai/whisper-large-v3"):
|
17 |
+
self.model = None
|
18 |
+
self.device = None
|
19 |
+
|
20 |
+
if self.model is None:
|
21 |
+
self.load_model(model_id)
|
22 |
+
else:
|
23 |
+
logging.info("Model already loaded.")
|
24 |
+
|
25 |
+
def load_model(self, model_id: str = "openai/whisper-large-v3"):
|
26 |
+
"""
|
27 |
+
Loads the pre-trained speech recognition model and moves it to the specified device.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
model_id (str): Identifier of the pre-trained model to be loaded.
|
31 |
+
"""
|
32 |
+
logging.info("Loading model...")
|
33 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
34 |
+
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True)
|
35 |
+
model.to(self.device)
|
36 |
+
logging.info("Model loaded successfully.")
|
37 |
+
|
38 |
+
self.model = model
|
39 |
+
|
40 |
+
def __call__(self, audio_path: str, model_id: str = "openai/whisper-large-v3", language: str = "turkish"):
|
41 |
+
"""
|
42 |
+
Converts audio to text using the pre-trained speech recognition model.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
audio_path (str): Path to the audio file to be transcribed.
|
46 |
+
model_id (str): Identifier of the pre-trained model to be used for transcription.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
str: Transcribed text from the audio.
|
50 |
+
"""
|
51 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
52 |
+
pipe = pipeline(
|
53 |
+
"automatic-speech-recognition",
|
54 |
+
model=self.model,
|
55 |
+
torch_dtype=torch.float16,
|
56 |
+
chunk_length_s=30,
|
57 |
+
max_new_tokens=128,
|
58 |
+
batch_size=24,
|
59 |
+
return_timestamps=True,
|
60 |
+
device="cuda",
|
61 |
+
tokenizer=processor.tokenizer,
|
62 |
+
feature_extractor=processor.feature_extractor,
|
63 |
+
model_kwargs={"use_flash_attention_2": True},
|
64 |
+
generate_kwargs={"language": language},
|
65 |
+
)
|
66 |
+
logging.info("Transcribing audio...")
|
67 |
+
result = pipe(audio_path)["text"]
|
68 |
+
return result
|
69 |
|
70 |
def youtube_url_to_text(url, model_id, language_choice):
|
71 |
"""
|