File size: 7,761 Bytes
bbe4238
884c49d
70814d8
 
0c8b1e1
70814d8
0c8b1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70814d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8b1e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70814d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222926
70814d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8b1e1
 
bbe4238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70814d8
 
bbe4238
 
70814d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr

from whisperplus.pipelines.whisper import SpeechToTextPipeline
from whisperplus.pipelines.whisper_diarize import ASRDiarizationPipeline
from whisperplus.utils.download_utils import download_and_convert_to_mp3
from whisperplus.utils.text_utils import format_speech_to_dialogue


def youtube_url_to_text(url, model_id, language_choice):
    """
    Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
    a specified model, and returns the transcript along with the video path.

    Args:
        url (str): The URL of the video to download and convert.
        model_id (str): The ID of the speech-to-text model to use.
        language_choice (str): The language choice for the speech-to-text conversion.

    Returns:
        transcript (str): The transcript of the speech-to-text conversion.
        video_path (str): The path of the downloaded video.
    """
    video_path = download_and_convert_to_mp3(url)
    pipeline = SpeechToTextPipeline(model_id)
    transcript = pipeline(audio_path=video_path, model_id=model_id, language=language_choice)

    return transcript, video_path


def speaker_diarization(url, model_id, device, num_speakers, min_speaker, max_speaker):
    """
    Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
    a specified model, and returns the transcript along with the video path.

    Args:
        url (str): The URL of the video to download and convert.
        model_id (str): The ID of the speech-to-text model to use.
        language_choice (str): The language choice for the speech-to-text conversion.

    Returns:
        transcript (str): The transcript of the speech-to-text conversion.
        video_path (str): The path of the downloaded video.
    """

    pipeline = ASRDiarizationPipeline.from_pretrained(
        asr_model=model_id,
        diarizer_model="pyannote/speaker-diarization",
        use_auth_token="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",
        chunk_length_s=30,
        device=device,
    )

    audio_path = download_and_convert_to_mp3(url)
    output_text = pipeline(
        audio_path, num_speakers=num_speakers, min_speaker=min_speaker, max_speaker=max_speaker)
    dialogue = format_speech_to_dialogue(output_text)
    return dialogue, audio_path


def youtube_url_to_text_app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                youtube_url_path = gr.Text(placeholder="Enter Youtube URL", label="Youtube URL")

                language_choice = gr.Dropdown(
                    choices=[
                        "English",
                        "Turkish",
                        "Spanish",
                        "French",
                        "Chinese",
                        "Japanese",
                        "Korean",
                    ],
                    value="Turkish",
                    label="Language",
                )
                whisper_model_id = gr.Dropdown(
                    choices=[
                        "openai/whisper-large-v3",
                        "openai/whisper-large",
                        "openai/whisper-medium",
                        "openai/whisper-base",
                        "openai/whisper-small",
                        "openai/whisper-tiny",
                    ],
                    value="openai/whisper-large-v3",
                    label="Whisper Model",
                )
                whisperplus_in_predict = gr.Button(value="Generator")

            with gr.Column():
                output_text = gr.Textbox(label="Output Text")
                output_audio = gr.Audio(label="Output Audio")

        whisperplus_in_predict.click(
            fn=youtube_url_to_text,
            inputs=[
                youtube_url_path,
                whisper_model_id,
                language_choice,
            ],
            outputs=[output_text, output_audio],
        )
        gr.Examples(
            examples=[
                [
                    "https://www.youtube.com/watch?v=di3rHkEZuUw",
                    "openai/whisper-large-v3",
                    "English",
                ],
            ],
            fn=youtube_url_to_text,
            inputs=[
                youtube_url_path,
                whisper_model_id,
                language_choice,
            ],
            outputs=[output_text, output_audio],
            cache_examples=True,
        )


def speaker_diarization_app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                youtube_url_path = gr.Text(placeholder="Enter Youtube URL", label="Youtube URL")

                whisper_model_id = gr.Dropdown(
                    choices=[
                        "openai/whisper-large-v3",
                        "openai/whisper-large",
                        "openai/whisper-medium",
                        "openai/whisper-base",
                        "openai/whisper-small",
                        "openai/whisper-tiny",
                    ],
                    value="openai/whisper-large-v3",
                    label="Whisper Model",
                )
                device = gr.Dropdown(
                    choices=["cpu", "cuda", "mps"],
                    value="cuda",
                    label="Device",
                )
                num_speakers = gr.Number(value=2, label="Number of Speakers")
                min_speaker = gr.Number(value=1, label="Minimum Number of Speakers")
                max_speaker = gr.Number(value=2, label="Maximum Number of Speakers")
                whisperplus_in_predict = gr.Button(value="Generator")

            with gr.Column():
                output_text = gr.Textbox(label="Output Text")
                output_audio = gr.Audio(label="Output Audio")

        whisperplus_in_predict.click(
            fn=speaker_diarization,
            inputs=[
                youtube_url_path,
                whisper_model_id,
                device,
                num_speakers,
                min_speaker,
                max_speaker,
            ],
            outputs=[output_text, output_audio],
        )
        gr.Examples(
            examples=[
                [
                    "https://www.youtube.com/shorts/o8PgLUgte2k",
                    "openai/whisper-large-v3",
                    "cuda",
                    2,
                    1,
                    2,
                ],
            ],
            fn=speaker_diarization,
            inputs=[
                youtube_url_path,
                whisper_model_id,
                device,
                num_speakers,
                min_speaker,
                max_speaker,
            ],
            outputs=[output_text, output_audio],
            cache_examples=True,
        )


gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    WhisperPlus: Advancing Speech-to-Text Processing 🚀
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        Follow me for more!
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>  | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            with gr.Tab(label="Youtube URL to Text"):
                youtube_url_to_text_app()
            with gr.Tab(label="Speaker Diarization"):
                speaker_diarization_app()

gradio_app.queue()
gradio_app.launch(debug=True)