Spaces:
Running
Running
Initial commit for Gradio API
Browse files- app.py +68 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import torchaudio
|
4 |
+
import gradio as gr
|
5 |
+
from speechbrain.inference import SpeakerRecognition
|
6 |
+
from fastapi import HTTPException
|
7 |
+
|
8 |
+
# Initialize the speaker verification model
|
9 |
+
speaker_verification = SpeakerRecognition.from_hparams(
|
10 |
+
source="speechbrain/spkrec-ecapa-voxceleb",
|
11 |
+
savedir="tmp_model"
|
12 |
+
)
|
13 |
+
|
14 |
+
# Temporary folder to save uploaded files
|
15 |
+
UPLOAD_FOLDER = "uploaded_audio"
|
16 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
17 |
+
|
18 |
+
# Function to calculate similarity score
|
19 |
+
def get_similarity(audio_path1: str, audio_path2: str):
|
20 |
+
try:
|
21 |
+
# Load audio files
|
22 |
+
signal1, _ = torchaudio.load(audio_path1)
|
23 |
+
signal2, _ = torchaudio.load(audio_path2)
|
24 |
+
|
25 |
+
# Get similarity score and prediction
|
26 |
+
score, prediction = speaker_verification.verify_batch(signal1, signal2)
|
27 |
+
return float(score), "Yes" if prediction else "No"
|
28 |
+
except Exception as e:
|
29 |
+
return str(e), None
|
30 |
+
finally:
|
31 |
+
# Clean up temporary files
|
32 |
+
if os.path.exists(audio_path1):
|
33 |
+
os.remove(audio_path1)
|
34 |
+
if os.path.exists(audio_path2):
|
35 |
+
os.remove(audio_path2)
|
36 |
+
|
37 |
+
# API function to compare voices
|
38 |
+
def compare_voices(file1, file2):
|
39 |
+
# Save uploaded files temporarily
|
40 |
+
file1_path = os.path.join(UPLOAD_FOLDER, file1.name)
|
41 |
+
file2_path = os.path.join(UPLOAD_FOLDER, file2.name)
|
42 |
+
|
43 |
+
with open(file1_path, "wb") as f1:
|
44 |
+
f1.write(file1.read())
|
45 |
+
with open(file2_path, "wb") as f2:
|
46 |
+
f2.write(file2.read())
|
47 |
+
|
48 |
+
# Get similarity score
|
49 |
+
score, is_same_user = get_similarity(file1_path, file2_path)
|
50 |
+
|
51 |
+
if is_same_user is None:
|
52 |
+
return "Error: " + score # This will return the error message
|
53 |
+
|
54 |
+
return {"Similarity Score": f"{score:.4f}", "Same User Prediction": is_same_user}
|
55 |
+
|
56 |
+
# Create Gradio Interface for the API
|
57 |
+
api = gr.Interface(
|
58 |
+
fn=compare_voices,
|
59 |
+
inputs=[
|
60 |
+
gr.Audio(source="upload", type="file", label="First Audio File"),
|
61 |
+
gr.Audio(source="upload", type="file", label="Second Audio File")
|
62 |
+
],
|
63 |
+
outputs="json", # Output results as JSON
|
64 |
+
live=False # No live interface, just the API
|
65 |
+
)
|
66 |
+
|
67 |
+
# Launch the API as an HTTP server
|
68 |
+
api.queue().launch(server_name="0.0.0.0", server_port=8080, share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
5 |
+
joblib
|
6 |
+
torchaudio
|
7 |
+
speechbrain
|
8 |
+
python-multipart
|
9 |
+
gradio
|