Spaces:
Sleeping
Sleeping
import os | |
import random | |
import torch | |
import librosa | |
import gradio as gr | |
from scipy.io.wavfile import write | |
from transformers import WavLMModel | |
import utils | |
from models import SynthesizerTrn | |
from mel_processing import mel_spectrogram_torch | |
from speaker_encoder.voice_encoder import SpeakerEncoder | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
''' | |
def get_wavlm(): | |
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU') | |
shutil.move('WavLM-Large.pt', 'wavlm') | |
''' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt') | |
''' | |
print("Loading FreeVC...") | |
hps = utils.get_hparams_from_file("configs/freevc.json") | |
freevc = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None) | |
''' | |
print("Loading FreeVC(24k)...") | |
hps = utils.get_hparams_from_file("configs/freevc-24.json") | |
freevc_24 = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_24.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None) | |
''' | |
print("Loading FreeVC-s...") | |
hps = utils.get_hparams_from_file("configs/freevc-s.json") | |
freevc_s = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_s.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None) | |
return random.choice(all_files) | |
print("Loading FreeVC-cvfr...") | |
hps = utils.get_hparams_from_file("configs/freevc_nosr_cvfr.json") | |
freevc_cvfr = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_cvfr.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-cvfr.pth", freevc_cvfr, None) | |
''' | |
print("Loading FreeVC-mls...") | |
hps = utils.get_hparams_from_file("configs/freevc_nosr_mls.json") | |
freevc_mls = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_mls.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-mls.pth", freevc_mls, None) | |
print("Loading WavLM for content...") | |
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device) | |
def get_random_wav_from_directory(directory, gender=None): | |
""" | |
Get a random WAV file from a directory. | |
If gender is specified, it fetches a male or female WAV accordingly. | |
""" | |
all_files = [f for f in os.listdir(directory) if f.endswith('.wav')] | |
if gender == "male": | |
all_files = [f for f in all_files if "male" in f and "female" not in f] | |
elif gender == "female": | |
all_files = [f for f in all_files if "female" in f] | |
return os.path.join(directory, random.choice(all_files)) | |
def convert(model, src_mic,src_file, reference_option): | |
""" | |
helper function which checks where source come from | |
""" | |
src = None | |
if src_mic and src_mic != "-": | |
src = src_mic | |
elif src_file: | |
src = src_file | |
#if not src: | |
# logging.warning("source or target are not provided") | |
# return | |
if not src: | |
logging.error("Source audio not provided") | |
return | |
if reference_option == "aléatoire": | |
tgt = get_random_wav_from_directory("mls_samples") | |
elif reference_option == "aléatoire (homme)": | |
tgt = get_random_wav_from_directory("mls_samples", "male") | |
elif reference_option == "aléatoire (femme)": | |
tgt = get_random_wav_from_directory("mls_samples", "female") | |
else: | |
logging.error("Option de référence non reconnue") | |
return | |
with torch.no_grad(): | |
# tgt | |
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate) | |
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) | |
if model == "FreeVC" or model == "FreeVC (24kHz)" or model == "FreeVC CVFR" or model == "FreeVC MLS": | |
g_tgt = smodel.embed_utterance(wav_tgt) | |
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) | |
else: | |
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) | |
mel_tgt = mel_spectrogram_torch( | |
wav_tgt, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax | |
) | |
# src | |
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate) | |
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device) | |
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device) | |
# infer | |
if model == "FreeVC": | |
audio = freevc.infer(c, g=g_tgt) | |
elif model == "FreeVC-s": | |
audio = freevc_s.infer(c, mel=mel_tgt) | |
elif model == "FreeVC CVFR": | |
audio = freevc_cvfr.infer(c, g=g_tgt) | |
elif model == "FreeVC MLS": | |
audio = freevc_mls.infer(c, g=g_tgt) | |
else: | |
audio = freevc_24.infer(c, g=g_tgt) | |
audio = audio[0][0].data.cpu().float().numpy() | |
if model == "FreeVC" or model == "FreeVC-s" or model == "FreeVC CVFR" or model == "FreeVC MLS": | |
write("out.wav", hps.data.sampling_rate, audio) | |
else: | |
write("out.wav", 24000, audio) | |
out = "out.wav" | |
return out | |
model = gr.Dropdown(choices=["FreeVC MLS","FreeVC (24kHz)"], value="FreeVC MLS",type="value", label="Model") | |
audio1_mic=gr.Audio(source="microphone", type="filepath", label='record your voice', optional=True) | |
audio1_file = gr.inputs.Audio(type='filepath', label='or upload an audio file', optional=True) | |
#audio2 = gr.inputs.Audio(label="Reference Audio", type='filepath', optional=True) | |
reference_dropdown = gr.Dropdown(choices=["aléatoire", "aléatoire (homme)", "aléatoire (femme)"], value="aléatoire",label="Voix de référence") | |
inputs = [model, audio1_mic, audio1_file, reference_dropdown] | |
outputs = gr.outputs.Audio(label="Output Audio", type='filepath') | |
title = "Démonstration d'Anonymisation de Voix" | |
description = ("Cette démo Gradio permet d'anonymiser une voix grâce à une implémentation simple de FreeVC. " | |
"Elle a été entraînée sur un extrait du jeu de données francophone MLS. Pour l'utiliser, vous pouvez " | |
"charger un fichier audio, enregistrer votre propre voix, ou choisir parmi des exemples pré-enregistrés. " | |
"À noter : le checkpoint WavLM dans HuggingFace semble différer légèrement de celui utilisé pour entraîner " | |
"FreeVC, ce qui pourrait impacter les performances. De plus, la ressemblance entre les voix peut être altérée " | |
"si l'audio de référence contient trop de silences. Veuillez donc retirer ces silences avant de soumettre " | |
"votre fichier audio. \n\n" | |
"<strong>AVERTISSEMENT :</strong> Cette démonstration est à visée pédagogique et il reste encore beaucoup " | |
"de travail à réaliser pour perfectionner l'outil. Nous déconseillons fortement son utilisation dans un " | |
"environnement de production.") | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.15418' target='_blank'>Article FreeVC</a> | <a href='https://arxiv.org/abs/2110.13900' target='_blank'>Article WavLM</a> | <a href='http://www.openslr.org/94/' target='_blank'>Jeu de données MLS</a></p>" | |
examples=[["FreeVC MLS",'SAMPLE_NADINE_MALICIEUX.wav','SAMPLE_NADINE_MALICIEUX.wav', 'aléatoire (homme)'], ["FreeVC MLS",'SAMPLE_HUGO_METEO.wav','SAMPLE_HUGO_METEO.wav', 'aléatoire (femme)'],["FreeVC MLS",'Julien30sec.wav','Julien30sec.wav', 'aléatoire (femme)'],] | |
gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch() | |
#gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, enable_queue=True).launch() | |