Spaces:
Runtime error
Runtime error
import streamlit as st | |
st.title('Numerai Example Script') | |
# content below adapted from | |
# https://github.com/numerai/example-scripts/blob/master/example_model.py | |
# | |
import pandas as pd | |
from lightgbm import LGBMRegressor | |
import gc | |
import json | |
from pathlib import Path | |
import os | |
from numerapi import NumerAPI | |
from utils import ( | |
save_model, | |
load_model, | |
neutralize, | |
get_biggest_change_features, | |
validation_metrics, | |
ERA_COL, | |
DATA_TYPE_COL, | |
TARGET_COL, | |
EXAMPLE_PREDS_COL | |
) | |
IS_RUNNING_IN_HUGGING_FACE = os.environ.get('HF_ENDPOINT') is not None | |
napi = NumerAPI() | |
current_round = napi.get_current_round() | |
# Tournament data changes every week so we specify the round in their name. Training | |
# and validation data only change periodically, so no need to download | |
# them every time. | |
Path("./v4").mkdir(parents=False, exist_ok=True) | |
def get_dataset_path(): | |
if IS_RUNNING_IN_HUGGING_FACE: | |
from datasets import load_dataset_builder | |
ds_builder = load_dataset_builder("Numerati/numerai-datasets") | |
return ds_builder.cache_dir | |
else: | |
return "./v4" | |
def download_dataset(): | |
print('download_dataset') | |
if IS_RUNNING_IN_HUGGING_FACE: | |
napi.download_dataset("v4/train.parquet") | |
napi.download_dataset("v4/validation.parquet") | |
napi.download_dataset("v4/validation_example_preds.parquet") | |
napi.download_dataset("v4/features.json") | |
napi.download_dataset("v4/live.parquet", f"v4/live_{current_round}.parquet") | |
print('done download_dataset') | |
def load_dataset(feature_set: str): | |
dataset_path = get_dataset_path() | |
print(f'load_dataset with feature_set {feature_set} and path {dataset_path}') | |
# read the feature metadata and get a feature set (or all the features) | |
with open(f"{dataset_path}/features.json", "r") as f: | |
feature_metadata = json.load(f) | |
# features = list(feature_metadata["feature_stats"].keys()) # get all the features | |
# features = feature_metadata["feature_sets"]["small"] # get the small | |
# feature set | |
features = feature_metadata["feature_sets"][feature_set] # get the medium feature set | |
# read in just those features along with era and target columns | |
read_columns = features + [ERA_COL, DATA_TYPE_COL, TARGET_COL] | |
# note: sometimes when trying to read the downloaded data you get an error about invalid magic parquet bytes... | |
# if so, delete the file and rerun the napi.download_dataset to fix the | |
# corrupted file | |
training_data = pd.read_parquet(f'{dataset_path}/train.parquet', | |
columns=read_columns) | |
validation_data = pd.read_parquet(f'{dataset_path}/validation.parquet', | |
columns=read_columns) | |
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet', | |
columns=read_columns) | |
# pare down the number of eras to every 4th era | |
# every_4th_era = training_data[ERA_COL].unique()[::4] | |
# training_data = training_data[training_data[ERA_COL].isin(every_4th_era)] | |
# getting the per era correlation of each feature vs the target | |
all_feature_corrs = training_data.groupby(ERA_COL).apply( | |
lambda era: era[features].corrwith(era[TARGET_COL]) | |
) | |
# find the riskiest features by comparing their correlation vs | |
# the target in each half of training data; we'll use these later | |
riskiest_features = get_biggest_change_features(all_feature_corrs, 50) | |
# "garbage collection" (gc) gets rid of unused data and frees up memory | |
gc.collect() | |
print('done with feature_set', feature_set) | |
return training_data, validation_data, live_data, features, riskiest_features | |
feature_set = st.selectbox( | |
'Which feature set should be used?', | |
('small', 'medium', 'fncv3_features', 'v2_equivalent_features', 'v3_equivalent_features')) | |
data_load_state = st.text('Loading data...') | |
download_dataset() | |
training_data, validation_data, live_data, features, riskiest_features = load_dataset(feature_set) | |
data_load_state.text('Loading data...done!') | |
st.subheader('Raw data') | |
st.write(training_data.head()) | |
st.subheader('Model Configuration') | |
n_estimators = st.slider('n_estimators', 100, 10000, 2000) | |
learning_rate = st.slider('learning_rate', 0.0001, 0.1, 0.01) | |
max_depth = st.slider('max_depth', 2, 20, 5) | |
params = {"n_estimators": n_estimators, | |
"learning_rate": learning_rate, | |
"max_depth": max_depth, | |
"num_leaves": 2 ** 5, | |
"colsample_bytree": 0.1 | |
} | |
model_name = f"model_target" | |
def get_model_and_fit(model_name, *params): | |
print('get_model_and_fit') | |
model = load_model(model_name) | |
if not model: | |
with st.spinner('Wait model training...'): | |
print(f"model not found, creating new one") | |
model = LGBMRegressor(**params) | |
# train on all of train and save the model so we don't have to | |
# train next time | |
model.fit(training_data.filter(like='feature_', axis='columns'), | |
training_data[TARGET_COL]) | |
print(f"saving new model: {model_name}") | |
save_model(model, model_name) | |
st.success('Done model training!') | |
gc.collect() | |
print('done get_model_and_fit') | |
has_model_preds = False | |
def get_model_preds(model_name, *params): | |
print('get_model_preds') | |
model = load_model(model_name) | |
has_model_preds = False | |
nans_per_col = live_data[live_data["data_type"] | |
== "live"][features].isna().sum() | |
# check for nans and fill nans | |
if nans_per_col.any(): | |
total_rows = len(live_data[live_data["data_type"] == "live"]) | |
print(f"Number of nans per column this week: {nans_per_col[nans_per_col > 0]}") | |
print(f"out of {total_rows} total rows") | |
print(f"filling nans with 0.5") | |
live_data.loc[:, features] = live_data.loc[:, features].fillna(0.5) | |
else: | |
print("No nans in the features this week!") | |
# double check the feature that the model expects vs what is available to prevent our | |
# pipeline from failing if Numerai adds more data and we don't have time | |
# to retrain! | |
model_expected_features = model.booster_.feature_name() | |
if set(model_expected_features) != set(features): | |
print(f"New features are available! Might want to retrain model {model_name}.") | |
validation_data.loc[:, f"preds_{model_name}"] = model.predict( | |
validation_data.loc[:, model_expected_features]) | |
live_data.loc[:, f"preds_{model_name}"] = model.predict( | |
live_data.loc[:, model_expected_features]) | |
gc.collect() | |
# neutralize our predictions to the riskiest features | |
validation_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize( | |
df=validation_data, | |
columns=[f"preds_{model_name}"], | |
neutralizers=riskiest_features, | |
proportion=1.0, | |
normalize=True, | |
era_col=ERA_COL | |
) | |
live_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize( | |
df=live_data, | |
columns=[f"preds_{model_name}"], | |
neutralizers=riskiest_features, | |
proportion=1.0, | |
normalize=True, | |
era_col=ERA_COL | |
) | |
model_to_submit = f"preds_{model_name}_neutral_riskiest_50" | |
# rename best model to "prediction" and rank from 0 to 1 to meet upload | |
# requirements | |
validation_data["prediction"] = validation_data[model_to_submit].rank(pct=True) | |
live_data["prediction"] = live_data[model_to_submit].rank(pct=True) | |
validation_prediction_fname = f"validation_predictions_{current_round}.csv" | |
validation_data["prediction"].to_csv(validation_prediction_fname) | |
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv") | |
validation_preds = pd.read_parquet(f'{get_dataset_path()}/validation_example_preds.parquet') | |
validation_data[EXAMPLE_PREDS_COL] = validation_preds["prediction"] | |
# get some stats about each of our models to compare... | |
# fast_mode=True so that we skip some of the stats that are slower to calculate | |
print('start validation_metrics') | |
validation_stats = validation_metrics(validation_data, [model_to_submit, f"preds_{model_name}"], example_col=EXAMPLE_PREDS_COL, fast_mode=True, target_col=TARGET_COL) | |
st.markdown(validation_stats[["mean", "sharpe"]].to_markdown()) | |
# st.write(f''' | |
# Done! Next steps: | |
# 1. Go to numer.ai/tournament (make sure you have an account) | |
# 2. Submit validation_predictions_{current_round}.csv to the diagnostics tool | |
# 3. Submit tournament_predictions_{current_round}.csv to the "Upload Predictions" button | |
# ''') | |
has_model_preds = True | |
st.button('Start model training', on_click=get_model_and_fit, args=[model_name, params]) | |
st.button('Start model evaluation', on_click=get_model_preds, args=[model_name, params]) | |
if has_model_preds: | |
st.download_button('Validation data for diagnostics tool', validation_data["prediction"], validation_prediction_fname) | |