Norod78's picture
Update app.py
7df29de verified
import os
from threading import Thread
from typing import Iterator
import gradio as gr
# from gradio import MultimodalTextbox
# from gradio.data_classes import FileData
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from typing_extensions import NotRequired, TypedDict
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 50000
DESCRIPTION = """\
# Yam-Peleg's Hebrew-Mistral-7B-200K
Hebrew-Mistral-7B-200K was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2708679492629415/).
Please, check the [original model card](https://huggingface.co/yam-peleg/Hebrew-Mistral-7B-200K) for more details.
You can see the other Hebrew models by Yam [here](https://huggingface.co/collections/yam-peleg/hebrew-models-65e957875324e2b9a4b68f08)
## While the user interface is of a chatbot for convenience, this is a base model and is not fine-tuned for chatbot tasks or instruction following tasks.
"""
LICENSE = """
<p/>
---
A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI.
The model and space are released under the Apache 2.0 license
This demo Space was created by [Doron Adler](https://linktr.ee/Norod78)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "yam-peleg/Hebrew-Mistral-7B-200K"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
tokenizer_id = "yam-peleg/Hebrew-Mistral-7B-200K"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.2,
top_p: float = 0.7,
top_k: int = 30,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
historical_text = ""
#Prepend the entire chat history to the message with new lines between each message
for user, assistant in chat_history:
historical_text += f"\n{user}\n{assistant}"
if len(historical_text) > 0:
message = historical_text + f"\n{message}"
input_ids = tokenizer([message], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(rtl=True, show_copy_button=True),
textbox=gr.Textbox(text_align = 'right', rtl = True),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.9,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.7,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=40,
),
],
stop_btn=None,
examples=[
["ืžืชื›ื•ืŸ ืœืขื•ื’ืช ืฉื•ืงื•ืœื“:"],
["ืฉืคืช ื”ืชื›ื ื•ืช ืคื™ื™ื˜ื•ืŸ ื”ื™ื"],
["ื”ืื™ืฉ ื”ืื—ืจื•ืŸ ื‘ืขื•ืœื ื™ืฉื‘ ืœื‘ื“ ื‘ื—ื“ืจื•, ื›ืฉืœืคืชืข"],
["ืฉืืœื”: ืžื”ื™ ืขื™ืจ ื”ื‘ื™ืจื” ืฉืœ ืžื“ื™ื ืช ื™ืฉืจืืœ?\nืชืฉื•ื‘ื”:"],
["ืฉืืœื”: ืื ื™ ืžืžืฉ ืขื™ื™ืฃ, ืžื” ื›ื“ืื™ ืœื™ ืœืขืฉื•ืช?\nืชืฉื•ื‘ื”:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()