Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 256 | |
MAX_INPUT_TOKEN_LENGTH = 512 | |
DESCRIPTION = """\ | |
# Yam-Peleg's Hebrew-Mistral-7B | |
Hebrew-Mistral-7B was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2701023256728372/). | |
Please, check the [original model card](https://huggingface.co/yam-peleg/Hebrew-Mistral-7B) for more details. | |
You can see the other Hebrew models by Yam [here](https://huggingface.co/collections/yam-peleg/hebrew-models-65e957875324e2b9a4b68f08) | |
# Note: Use this model for only for completing sentences. | |
## While the user interface is of a chatbot for convenience, this is a base model and is not fine-tuned for chatbot tasks or instruction following tasks. As such, the model is not provided a chat history and will complete your text based on the last given prompt only. | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI. | |
The model and space are released under the Apache 2.0 license | |
This demo Space was created by [Doron Adler](https://linktr.ee/Norod78) | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "yam-peleg/Hebrew-Mistral-7B" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) | |
tokenizer_id = "yam-peleg/Hebrew-Mistral-7B" | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.2, | |
top_p: float = 0.7, | |
top_k: int = 30, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
input_ids = tokenizer([message], return_tensors="pt").input_ids | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
pad_token_id = tokenizer.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=5, | |
early_stopping=False, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(rtl=True, show_copy_button=True), | |
textbox=gr.Textbox(text_align = 'right', rtl = True), | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.3, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.3, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=30, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["ืืชืืื ืืขืืืช ืฉืืงืืื:"], | |
["ืฉืคืช ืืชืื ืืช ืคืืืืื ืืื"], | |
["ืืขืืืื ืฉื ืกืื ืืจืื"], | |
["ืฉืืื: ืืื ืขืืจ ืืืืจื ืฉื ืืืื ืช ืืฉืจืื?\nืชืฉืืื:"], | |
["ืฉืืื: ืื ื ืืืฉ ืขืืืฃ, ืื ืืืื ืื ืืขืฉืืช?\nืชืฉืืื:"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |