Spaces:
Sleeping
Sleeping
File size: 4,965 Bytes
5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa 1b9dc38 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa 0eee7a4 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 5cd48aa cf93af3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
# from gradio import MultimodalTextbox
# from gradio.data_classes import FileData
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from typing_extensions import NotRequired, TypedDict
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 50000
DESCRIPTION = """\
# Yam-Peleg's Hebrew-Mistral-7B-200K
Hebrew-Mistral-7B-200K was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2708679492629415/).
Please, check the [original model card](https://huggingface.co/yam-peleg/Hebrew-Mistral-7B-200K) for more details.
You can see the other Hebrew models by Yam [here](https://huggingface.co/collections/yam-peleg/hebrew-models-65e957875324e2b9a4b68f08)
# Note: Use this model for only for completing sentences.
## While the user interface is of a chatbot for convenience, this is a base model and is not fine-tuned for chatbot tasks or instruction following tasks.
"""
LICENSE = """
<p/>
---
A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI.
The model and space are released under the Apache 2.0 license
This demo Space was created by [Doron Adler](https://linktr.ee/Norod78)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "yam-peleg/Hebrew-Mistral-7B-200K"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
tokenizer_id = "yam-peleg/Hebrew-Mistral-7B-200K"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.2,
top_p: float = 0.7,
top_k: int = 30,
repetition_penalty: float = 1.0,
) -> Iterator[str]:
historical_text = ""
#Prepend the entire chat history to the message with new lines between each message
for user, assistant in chat_history:
historical_text += f"\n{user}\n{assistant}"
message = historical_text + f"\n{message}"
if len(historical_text) > 0:
message = historical_text + f"\n{message}"
input_ids = tokenizer([message], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(rtl=True, show_copy_button=True),
textbox=gr.Textbox(text_align = 'right', rtl = True),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.9,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.7,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=40,
),
],
stop_btn=None,
examples=[
["ืืชืืื ืืขืืืช ืฉืืงืืื:"],
["ืฉืคืช ืืชืื ืืช ืคืืืืื ืืื"],
["ืืืืฉ ืืืืจืื ืืขืืื ืืฉื ืืื ืืืืจื, ืืฉืืคืชืข"],
["ืฉืืื: ืืื ืขืืจ ืืืืจื ืฉื ืืืื ืช ืืฉืจืื?\nืชืฉืืื:"],
["ืฉืืื: ืื ื ืืืฉ ืขืืืฃ, ืื ืืืื ืื ืืขืฉืืช?\nืชืฉืืื:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |