Noobian's picture
Update app.py
64c1b5e
import gradio as gr
import PyPDF2
#rom langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import HuggingFaceHub
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain import OpenAI, VectorDBQA
import os
def pdf_to_text(pdf_file, query):
# Open the PDF file in binary mode
with open(pdf_file.name, 'rb') as pdf_file:
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(pdf_file)
# Create an empty string to store the text
text = ""
# Loop through each page of the PDF
for page_num in range(len(pdf_reader.pages)):
# Get the page object
page = pdf_reader.pages[page_num]
# Extract the texst from the page and add it to the text variable
text += page.extract_text()
#embedding step
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(text)
embeddings = HuggingFaceEmbeddings()
#vector store
vectorstore = FAISS.from_texts(texts, embeddings)
llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":512})
loaders = UnstructuredPDFLoader(pdf_file)
index = vectorstore.as_retriever()
#inference
#qa = VectorDBQA.from_chain_type(llm=llm, chain_type="stuff", vectorstore=vectorstore)
from langchain.chains import RetrievalQA
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=index,
input_key="question")
return chain.run(query)
# Define the Gradio interface
pdf_input = gr.inputs.File(label="PDF File")
query_input = gr.inputs.Textbox(label="Query")
outputs = gr.outputs.Textbox(label="Chatbot Response")
interface = gr.Interface(fn=pdf_to_text, inputs=[pdf_input, query_input], outputs=outputs)
# Run the interface
interface.launch(debug = True)