Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE =
|
22 |
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
@@ -57,17 +45,8 @@ examples = [
|
|
57 |
"A delicious ceviche cheesecake slice",
|
58 |
]
|
59 |
|
60 |
-
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
@@ -102,18 +81,18 @@ with gr.Blocks(css=css) as demo:
|
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
-
minimum=
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
-
minimum=
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
@@ -122,15 +101,15 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
-
maximum=
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
@@ -151,4 +130,4 @@ with gr.Blocks(css=css) as demo:
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
from optimum.intel import OVStableDiffusionXLPipeline
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
+
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
|
8 |
+
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
MAX_SEED = np.iinfo(np.int32).max
|
11 |
+
MAX_IMAGE_SIZE = 2048
|
12 |
|
|
|
|
|
13 |
def infer(
|
14 |
prompt,
|
15 |
negative_prompt,
|
|
|
45 |
"A delicious ceviche cheesecake slice",
|
46 |
]
|
47 |
|
48 |
+
with gr.Blocks() as img:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with gr.Column(elem_id="col-container"):
|
|
|
|
|
50 |
with gr.Row():
|
51 |
prompt = gr.Text(
|
52 |
label="Prompt",
|
|
|
81 |
with gr.Row():
|
82 |
width = gr.Slider(
|
83 |
label="Width",
|
84 |
+
minimum=512,
|
85 |
maximum=MAX_IMAGE_SIZE,
|
86 |
step=32,
|
87 |
+
value=832, # Replace with defaults that work for your model
|
88 |
)
|
89 |
|
90 |
height = gr.Slider(
|
91 |
label="Height",
|
92 |
+
minimum=512,
|
93 |
maximum=MAX_IMAGE_SIZE,
|
94 |
step=32,
|
95 |
+
value=1216, # Replace with defaults that work for your model
|
96 |
)
|
97 |
|
98 |
with gr.Row():
|
|
|
101 |
minimum=0.0,
|
102 |
maximum=10.0,
|
103 |
step=0.1,
|
104 |
+
value=5.0, # Replace with defaults that work for your model
|
105 |
)
|
106 |
|
107 |
num_inference_steps = gr.Slider(
|
108 |
label="Number of inference steps",
|
109 |
minimum=1,
|
110 |
+
maximum=60,
|
111 |
step=1,
|
112 |
+
value=28, # Replace with defaults that work for your model
|
113 |
)
|
114 |
|
115 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
130 |
)
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
+
img.launch()
|