Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,9 @@ import time
|
|
5 |
from optimum.intel import OVStableDiffusionXLPipeline
|
6 |
import torch
|
7 |
from diffusers import EulerDiscreteScheduler
|
8 |
-
from
|
|
|
|
|
9 |
|
10 |
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
|
11 |
|
@@ -21,13 +23,9 @@ def reload_model(new_model_id):
|
|
21 |
try:
|
22 |
print(f"{model_id}...")
|
23 |
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False)
|
24 |
-
# pipe.to("gpu")
|
25 |
if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino":
|
26 |
scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}
|
27 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args)
|
28 |
-
# pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
|
29 |
-
# pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
30 |
-
# pipe.fuse_lora()
|
31 |
pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1)
|
32 |
pipe.compile()
|
33 |
print(f"{model_id}!!!")
|
@@ -35,7 +33,7 @@ def reload_model(new_model_id):
|
|
35 |
except Exception as e:
|
36 |
return f"Failed to load model: {str(e)}"
|
37 |
reload_model(model_id)
|
38 |
-
|
39 |
def infer(
|
40 |
prompt,
|
41 |
negative_prompt,
|
@@ -70,7 +68,11 @@ def infer(
|
|
70 |
generator=generator,
|
71 |
).images[0]
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
examples = ["murasame \(senren\), senren banka",]
|
@@ -99,6 +101,8 @@ with gr.Blocks() as img:
|
|
99 |
|
100 |
result = gr.Image(label="Result", show_label=False)
|
101 |
|
|
|
|
|
102 |
with gr.Accordion("Advanced Settings", open=False):
|
103 |
negative_prompt = gr.Text(
|
104 |
label="Negative prompt",
|
@@ -144,7 +148,7 @@ with gr.Blocks() as img:
|
|
144 |
)
|
145 |
|
146 |
gr.Examples(examples=examples, inputs=[prompt])
|
147 |
-
|
148 |
gr.Markdown("### Model Reload")
|
149 |
with gr.Row():
|
150 |
new_model_id = gr.Text(label="New Model ID", placeholder="Enter model ID", value=model_id)
|
@@ -157,8 +161,7 @@ with gr.Blocks() as img:
|
|
157 |
outputs=reload_status,
|
158 |
)
|
159 |
|
160 |
-
|
161 |
-
triggers=[run_button.click, prompt.submit],
|
162 |
fn=infer,
|
163 |
inputs=[
|
164 |
prompt,
|
@@ -170,8 +173,18 @@ with gr.Blocks() as img:
|
|
170 |
guidance_scale,
|
171 |
num_inference_steps,
|
172 |
],
|
173 |
-
outputs=[result, seed],
|
174 |
)
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
if __name__ == "__main__":
|
177 |
-
img.
|
|
|
5 |
from optimum.intel import OVStableDiffusionXLPipeline
|
6 |
import torch
|
7 |
from diffusers import EulerDiscreteScheduler
|
8 |
+
from io import BytesIO
|
9 |
+
from PIL import Image
|
10 |
+
import base64
|
11 |
|
12 |
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
|
13 |
|
|
|
23 |
try:
|
24 |
print(f"{model_id}...")
|
25 |
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False)
|
|
|
26 |
if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino":
|
27 |
scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}
|
28 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args)
|
|
|
|
|
|
|
29 |
pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1)
|
30 |
pipe.compile()
|
31 |
print(f"{model_id}!!!")
|
|
|
33 |
except Exception as e:
|
34 |
return f"Failed to load model: {str(e)}"
|
35 |
reload_model(model_id)
|
36 |
+
|
37 |
def infer(
|
38 |
prompt,
|
39 |
negative_prompt,
|
|
|
68 |
generator=generator,
|
69 |
).images[0]
|
70 |
|
71 |
+
# Save image as Base64
|
72 |
+
buffered = BytesIO()
|
73 |
+
image.save(buffered, format="PNG")
|
74 |
+
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
75 |
+
return image, seed, f"data:image/png;base64,{base64_image}"
|
76 |
|
77 |
|
78 |
examples = ["murasame \(senren\), senren banka",]
|
|
|
101 |
|
102 |
result = gr.Image(label="Result", show_label=False)
|
103 |
|
104 |
+
base64_view = gr.HTML(label="Base64 Image Preview", interactive=True)
|
105 |
+
|
106 |
with gr.Accordion("Advanced Settings", open=False):
|
107 |
negative_prompt = gr.Text(
|
108 |
label="Negative prompt",
|
|
|
148 |
)
|
149 |
|
150 |
gr.Examples(examples=examples, inputs=[prompt])
|
151 |
+
|
152 |
gr.Markdown("### Model Reload")
|
153 |
with gr.Row():
|
154 |
new_model_id = gr.Text(label="New Model ID", placeholder="Enter model ID", value=model_id)
|
|
|
161 |
outputs=reload_status,
|
162 |
)
|
163 |
|
164 |
+
run_button.click(
|
|
|
165 |
fn=infer,
|
166 |
inputs=[
|
167 |
prompt,
|
|
|
173 |
guidance_scale,
|
174 |
num_inference_steps,
|
175 |
],
|
176 |
+
outputs=[result, seed, base64_view],
|
177 |
)
|
178 |
|
179 |
+
# JavaScript logic to dynamically update HTML with Base64
|
180 |
+
js_script = """
|
181 |
+
<script>
|
182 |
+
function updateBase64(html_id, base64_src) {
|
183 |
+
document.getElementById(html_id).innerHTML = `<img src="${base64_src}" alt="Generated Image"/>`;
|
184 |
+
}
|
185 |
+
</script>
|
186 |
+
"""
|
187 |
+
gr.HTML(js_script)
|
188 |
+
|
189 |
if __name__ == "__main__":
|
190 |
+
img.launch()
|