Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import time | |
from optimum.intel import OVStableDiffusionXLPipeline | |
import torch | |
from diffusers import EulerDiscreteScheduler | |
from io import BytesIO | |
from PIL import Image | |
import base64 | |
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino" | |
prev_height = 1216 | |
prev_width = 832 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def reload_model(new_model_id): | |
global pipe, model_id, prev_height, prev_width | |
model_id = new_model_id | |
try: | |
print(f"{model_id}...") | |
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id, compile=False) | |
if model_id == "None1145/noobai-XL-Vpred-0.65s-openvino": | |
scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True} | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args) | |
pipe.reshape(batch_size=1, height=prev_height, width=prev_width, num_images_per_prompt=1) | |
pipe.compile() | |
print(f"{model_id}!!!") | |
return f"Model successfully loaded: {model_id}" | |
except Exception as e: | |
return f"Failed to load model: {str(e)}" | |
reload_model(model_id) | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
): | |
global prev_width, prev_height, pipe | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if prev_width != width or prev_height != height: | |
pipe.reshape(batch_size=1, height=height, width=width, num_images_per_prompt=1) | |
pipe.compile() | |
prev_width = width | |
prev_height = height | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = ["murasame \(senren\), senren banka",] | |
with gr.Blocks() as img: | |
gr.Markdown("# OpenVINO Text to Image") | |
gr.Markdown("### It usually takes 2200 seconds to generate an 832x1216 image (28 steps) (CPU).") | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
value="murasame \(senren\), senren banka" | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=60, | |
step=1, | |
value=28, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False, value=Image.open(requests.get("https://huggingface.co/None1145/noobai-XL-Vpred-0.65s-openvino/blob/main/example.webp").content)) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=832, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1216, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.Markdown("### Model Reload") | |
with gr.Row(): | |
new_model_id = gr.Text(label="New Model ID", placeholder="Enter model ID", value=model_id) | |
reload_button = gr.Button("Reload Model", variant="primary") | |
reload_status = gr.Text(label="Status", interactive=False) | |
reload_button.click( | |
fn=reload_model, | |
inputs=new_model_id, | |
outputs=reload_status, | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
img.queue(max_size=10).launch() | |