NoaiGPT commited on
Commit
2e59e05
·
1 Parent(s): e127931
Files changed (1) hide show
  1. app.py +186 -4
app.py CHANGED
@@ -328,6 +328,188 @@ def generate_paraphrases(text, setting, output_format):
328
 
329
  json_output["combined_versions"] = combined_versions
330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
  # Classify combined versions
332
  human_versions = []
333
  for i, version in enumerate(combined_versions, 1):
@@ -336,17 +518,17 @@ def generate_paraphrases(text, setting, output_format):
336
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
337
  if label == "human-produced" or (label == "machine-generated" and score < 0.98):
338
  human_versions.append((version, label, score))
339
-
340
  formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
341
  for i, (version, label, score) in enumerate(human_versions, 1):
342
  formatted_output += f"Version {i}:\n{version}\n"
343
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
344
-
345
  json_output["human_like_versions"] = [
346
  {"version": version, "label": label, "confidence_score": score}
347
  for version, label, score in human_versions
348
  ]
349
-
350
  # If no human-like versions, include the top 5 least confident machine-generated versions
351
  if not human_versions:
352
  human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
@@ -354,7 +536,7 @@ def generate_paraphrases(text, setting, output_format):
354
  for i, (version, label, score) in enumerate(human_versions, 1):
355
  formatted_output += f"Version {i}:\n{version}\n"
356
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
357
-
358
  if output_format == "text":
359
  return formatted_output, "\n\n".join([v[0] for v in human_versions])
360
  else:
 
328
 
329
  json_output["combined_versions"] = combined_versions
330
 
331
+ # # Classify combined versions
332
+ # human_versions = []
333
+ # for i, version in enumerate(combined_versions, 1):
334
+ # label, score = classify_text(version)
335
+ # formatted_output += f"Version {i}:\n{version}\n"
336
+ # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
337
+ # if label == "human-produced" or (label == "machine-generated" and score < 0.98):
338
+ # human_versions.append((version, label, score))
339
+
340
+ # formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
341
+ # for i, (version, label, score) in enumerate(human_versions, 1):
342
+ # formatted_output += f"Version {i}:\n{version}\n"
343
+ # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
344
+
345
+ # json_output["human_like_versions"] = [
346
+ # {"version": version, "label": label, "confidence_score": score}
347
+ # for version, label, score in human_versions
348
+ # ]
349
+
350
+ # # If no human-like versions, include the top 5 least confident machine-generated versions
351
+ # if not human_versions:
352
+ # human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
353
+ # formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
354
+ # for i, (version, label, score) in enumerate(human_versions, 1):
355
+ # formatted_output += f"Version {i}:\n{version}\n"
356
+ # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
357
+
358
+ # if output_format == "text":
359
+ # return formatted_output, "\n\n".join([v[0] for v in human_versions])
360
+ # else:
361
+ # return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
362
+
363
+ # # Define the Gradio interface
364
+ # iface = gr.Interface(
365
+ # fn=generate_paraphrases,
366
+ # inputs=[
367
+ # gr.Textbox(lines=5, label="Input Text"),
368
+ # gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
369
+ # gr.Radio(["text", "json"], label="Output Format")
370
+ # ],
371
+ # outputs=[
372
+ # gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
373
+ # gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
374
+ # ],
375
+ # title="Advanced Diverse Paraphraser with Human-like Filter",
376
+ # description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
377
+ # )
378
+
379
+ # # Launch the interface
380
+ # iface.launch()
381
+
382
+
383
+ import os
384
+ import json
385
+ import gradio as gr
386
+ import spaces
387
+ import torch
388
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, T5ForConditionalGeneration
389
+ from sentence_splitter import SentenceSplitter
390
+ from itertools import product
391
+
392
+ # Get the Hugging Face token from environment variable
393
+ hf_token = os.getenv('HF_TOKEN')
394
+
395
+ cuda_available = torch.cuda.is_available()
396
+ device = torch.device("cuda" if cuda_available else "cpu")
397
+ print(f"Using device: {device}")
398
+
399
+ # Initialize paraphraser model and tokenizer
400
+ paraphraser_model_name = "NoaiGPT/777"
401
+ paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
402
+ paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)
403
+
404
+ # Initialize classifier model and tokenizer
405
+ classifier_model_name = "andreas122001/roberta-mixed-detector"
406
+ classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
407
+ classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
408
+
409
+ # Initialize grammar correction model and tokenizer
410
+ grammar_model_name = "grammarly/coedit-large"
411
+ grammar_tokenizer = AutoTokenizer.from_pretrained(grammar_model_name)
412
+ grammar_model = T5ForConditionalGeneration.from_pretrained(grammar_model_name).to(device)
413
+
414
+ # Initialize sentence splitter
415
+ splitter = SentenceSplitter(language='en')
416
+
417
+ def classify_text(text):
418
+ inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
419
+ with torch.no_grad():
420
+ outputs = classifier_model(**inputs)
421
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
422
+ predicted_class = torch.argmax(probabilities, dim=-1).item()
423
+ main_label = classifier_model.config.id2label[predicted_class]
424
+ main_score = probabilities[0][predicted_class].item()
425
+ return main_label, main_score
426
+
427
+ @spaces.GPU
428
+ def correct_grammar(text):
429
+ inputs = grammar_tokenizer(f'Fix grammatical errors in this sentence: {text}', return_tensors="pt").input_ids.to(device)
430
+ outputs = grammar_model.generate(inputs, max_length=256)
431
+ corrected_text = grammar_tokenizer.decode(outputs[0], skip_special_tokens=True)
432
+ return corrected_text
433
+
434
+ @spaces.GPU
435
+ def generate_paraphrases(text, setting, output_format):
436
+ sentences = splitter.split(text)
437
+ all_sentence_paraphrases = []
438
+
439
+ # Define settings
440
+ settings = {
441
+ 1: {"num_return_sequences": 2, "repetition_penalty": 1.1, "no_repeat_ngram_size": 2, "temperature": 1.0, "max_length": 128},
442
+ 2: {"num_return_sequences": 2, "repetition_penalty": 1.2, "no_repeat_ngram_size": 3, "temperature": 1.2, "max_length": 192},
443
+ 3: {"num_return_sequences": 2, "repetition_penalty": 1.3, "no_repeat_ngram_size": 4, "temperature": 1.4, "max_length": 256},
444
+ 4: {"num_return_sequences": 2, "repetition_penalty": 1.4, "no_repeat_ngram_size": 5, "temperature": 1.6, "max_length": 320},
445
+ 5: {"num_return_sequences": 2, "repetition_penalty": 1.5, "no_repeat_ngram_size": 6, "temperature": 1.8, "max_length": 384}
446
+ }
447
+ config = settings.get(setting, settings[5])
448
+
449
+ top_k = 50
450
+ top_p = 0.95
451
+ length_penalty = 1.0
452
+
453
+ formatted_output = "Original text:\n" + text + "\n\n"
454
+ formatted_output += "Paraphrased versions:\n"
455
+
456
+ json_output = {
457
+ "original_text": text,
458
+ "paraphrased_versions": [],
459
+ "combined_versions": [],
460
+ "human_like_versions": []
461
+ }
462
+
463
+ # Process sentences in batches
464
+ batch_size = 4
465
+ for i in range(0, len(sentences), batch_size):
466
+ batch_sentences = sentences[i:i + batch_size]
467
+ inputs = paraphraser_tokenizer([f'paraphraser: {sentence}' for sentence in batch_sentences], return_tensors="pt", padding="longest", truncation=True, max_length=config["max_length"]).to(device)
468
+
469
+ # Generate paraphrases using the specified parameters
470
+ outputs = paraphraser_model.generate(
471
+ inputs.input_ids,
472
+ attention_mask=inputs.attention_mask,
473
+ num_return_sequences=config["num_return_sequences"],
474
+ repetition_penalty=config["repetition_penalty"],
475
+ no_repeat_ngram_size=config["no_repeat_ngram_size"],
476
+ temperature=config["temperature"],
477
+ max_length=config["max_length"],
478
+ top_k=top_k,
479
+ top_p=top_p,
480
+ do_sample=True,
481
+ early_stopping=False,
482
+ length_penalty=length_penalty
483
+ )
484
+
485
+ paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
486
+
487
+ corrected_paraphrases = [correct_grammar(paraphrase) for paraphrase in paraphrases]
488
+
489
+ for j, sentence in enumerate(batch_sentences):
490
+ formatted_output += f"Original sentence {i + j + 1}: {sentence}\n"
491
+ sentence_paraphrases = corrected_paraphrases[j * config["num_return_sequences"]:(j + 1) * config["num_return_sequences"]]
492
+ for k, paraphrase in enumerate(sentence_paraphrases, 1):
493
+ formatted_output += f" Paraphrase {k}: {paraphrase}\n"
494
+
495
+ json_output["paraphrased_versions"].append({
496
+ f"original_sentence_{i + j + 1}": sentence,
497
+ "paraphrases": sentence_paraphrases
498
+ })
499
+
500
+ all_sentence_paraphrases.append(sentence_paraphrases)
501
+ formatted_output += "\n"
502
+
503
+ all_combinations = list(product(*all_sentence_paraphrases))
504
+
505
+ formatted_output += "\nCombined paraphrased versions:\n"
506
+ combined_versions = []
507
+ for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
508
+ combined_paraphrase = " ".join(combination)
509
+ combined_versions.append(combined_paraphrase)
510
+
511
+ json_output["combined_versions"] = combined_versions
512
+
513
  # Classify combined versions
514
  human_versions = []
515
  for i, version in enumerate(combined_versions, 1):
 
518
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
519
  if label == "human-produced" or (label == "machine-generated" and score < 0.98):
520
  human_versions.append((version, label, score))
521
+
522
  formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
523
  for i, (version, label, score) in enumerate(human_versions, 1):
524
  formatted_output += f"Version {i}:\n{version}\n"
525
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
526
+
527
  json_output["human_like_versions"] = [
528
  {"version": version, "label": label, "confidence_score": score}
529
  for version, label, score in human_versions
530
  ]
531
+
532
  # If no human-like versions, include the top 5 least confident machine-generated versions
533
  if not human_versions:
534
  human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
 
536
  for i, (version, label, score) in enumerate(human_versions, 1):
537
  formatted_output += f"Version {i}:\n{version}\n"
538
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
539
+
540
  if output_format == "text":
541
  return formatted_output, "\n\n".join([v[0] for v in human_versions])
542
  else: