drmurataltun commited on
Commit
7890a30
1 Parent(s): 18f410e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -36
app.py CHANGED
@@ -3,8 +3,6 @@
3
 
4
  # # Araba Fiyatı Tahmin Eden Model ve Deployment
5
 
6
- # In[18]:
7
-
8
 
9
  #import libraries
10
  import pandas as pd
@@ -16,41 +14,26 @@ from sklearn.compose import ColumnTransformer
16
  from sklearn.preprocessing import StandardScaler,OneHotEncoder
17
 
18
 
19
- # In[19]:
20
-
21
 
22
  #Load data
23
  df=pd.read_excel('cars.xls')
24
 
25
 
26
- # In[6]:
27
-
28
-
29
- df.head()
30
-
31
-
32
- # In[7]:
33
-
34
 
35
- #df.to_csv('cars.csv',index=False)
36
 
37
 
38
- # In[20]:
39
 
40
 
41
  X=df.drop('Price',axis=1)
42
  y=df[['Price']]
43
 
44
 
45
- # In[21]:
46
-
47
 
48
  X_train,X_test,y_train,y_test=train_test_split(X,y,
49
  test_size=0.2,
50
  random_state=42)
51
 
52
 
53
- # In[22]:
54
 
55
 
56
  preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
@@ -58,7 +41,6 @@ preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
58
  ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
59
 
60
 
61
- # In[23]:
62
 
63
 
64
  model=LinearRegression()
@@ -68,10 +50,6 @@ pipe.fit(X_train,y_train)
68
  y_pred=pipe.predict(X_test)
69
  mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
70
 
71
-
72
- # In[24]:
73
-
74
-
75
  import streamlit as st
76
  def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
77
  input_data=pd.DataFrame({
@@ -90,27 +68,24 @@ def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,lea
90
  })
91
  prediction=pipe.predict(input_data)[0]
92
  return prediction
93
- st.title("Car Price Prediction :red_car: @drmurataltun")
94
- st.write("Enter Car Details to predict the price of the car")
95
- make=st.selectbox("Make",df['Make'].unique())
96
  model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
97
  trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
98
- mileage=st.number_input("Mileage",200,60000)
99
- car_type=st.selectbox("Type",df['Type'].unique())
100
- cylinder=st.selectbox("Cylinder",df['Cylinder'].unique())
101
  liter=st.number_input("Liter",1,6)
102
- doors=st.selectbox("Doors",df['Doors'].unique())
103
- cruise=st.radio("Cruise",[True,False])
104
- sound=st.radio("Sound",[True,False])
105
- leather=st.radio("Leather",[True,False])
106
- if st.button("Predict"):
107
  pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
108
 
109
  st.write("Predicted Price :red_car: $",round(pred[0],2))
110
 
111
 
112
- # In[ ]:
113
-
114
-
115
 
116
 
 
3
 
4
  # # Araba Fiyatı Tahmin Eden Model ve Deployment
5
 
 
 
6
 
7
  #import libraries
8
  import pandas as pd
 
14
  from sklearn.preprocessing import StandardScaler,OneHotEncoder
15
 
16
 
 
 
17
 
18
  #Load data
19
  df=pd.read_excel('cars.xls')
20
 
21
 
 
 
 
 
 
 
 
 
22
 
 
23
 
24
 
 
25
 
26
 
27
  X=df.drop('Price',axis=1)
28
  y=df[['Price']]
29
 
30
 
 
 
31
 
32
  X_train,X_test,y_train,y_test=train_test_split(X,y,
33
  test_size=0.2,
34
  random_state=42)
35
 
36
 
 
37
 
38
 
39
  preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
 
41
  ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
42
 
43
 
 
44
 
45
 
46
  model=LinearRegression()
 
50
  y_pred=pipe.predict(X_test)
51
  mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
52
 
 
 
 
 
53
  import streamlit as st
54
  def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
55
  input_data=pd.DataFrame({
 
68
  })
69
  prediction=pipe.predict(input_data)[0]
70
  return prediction
71
+ st.title("Araba Fiyatı Tahmin :red_car: @drmurataltun")
72
+ st.write("Arabanın özelliklerini seçin")
73
+ make=st.selectbox("Marka",df['Make'].unique())
74
  model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
75
  trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
76
+ mileage=st.number_input("Kilometre",200,60000)
77
+ car_type=st.selectbox("Tipi",df[(df['Make']==make) & (df['Model']==model & df['Trim']==trim )['Type'].unique())
78
+ cylinder=st.selectbox("Silindir",df['Cylinder'].unique())
79
  liter=st.number_input("Liter",1,6)
80
+ doors=st.selectbox("Kapı",df['Doors'].unique())
81
+ cruise=st.radio("Hız S.",[True,False])
82
+ sound=st.radio("Ses Sistemi",[True,False])
83
+ leather=st.radio("Deri döşeme",[True,False])
84
+ if st.button("Tahmin"):
85
  pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
86
 
87
  st.write("Predicted Price :red_car: $",round(pred[0],2))
88
 
89
 
 
 
 
90
 
91