NoFearNo commited on
Commit
373cfdd
1 Parent(s): dc1f1f8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -93
app.py DELETED
@@ -1,93 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- import pandas as pd
5
- from sklearn.model_selection import train_test_split #veri setini bölme işlemleri
6
- from sklearn.linear_model import LinearRegression #Doğrusal regresyon
7
- from sklearn.metrics import r2_score,mean_squared_error #modelimizin performansını ölçmek için
8
- from sklearn.compose import ColumnTransformer #Sütun dönüşüm işlemleri
9
- from sklearn.preprocessing import OneHotEncoder, StandardScaler # kategori - sayısal dönüşüm ve ölçeklendirme
10
- from sklearn.pipeline import Pipeline #Veri işleme hattı
11
- df=pd.read_excel('cars.xls')
12
- #df
13
-
14
- df.info()
15
-
16
-
17
- X=df.drop('Price',axis=1) #fiyat sütunu çıkar fiyata etki edenler kalsın
18
- y=df['Price'] #tahmin
19
-
20
- X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
21
-
22
-
23
- preprocess=ColumnTransformer(
24
- transformers=[
25
- ('num',StandardScaler(),['Mileage', 'Cylinder','Liter','Doors']),
26
- ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])
27
- ]
28
- )
29
-
30
-
31
- my_model=LinearRegression()
32
-
33
-
34
-
35
- #pipeline ı tanımla
36
- pipe=Pipeline(steps=[('preprocessor',preprocess),('model',my_model)])
37
-
38
-
39
-
40
-
41
- #pipeline fit
42
- pipe.fit(X_train,y_train)
43
-
44
-
45
-
46
- y_pred=pipe.predict(X_test)
47
- print('RMSE',mean_squared_error(y_test,y_pred)**0.5)
48
- print('R2',r2_score(y_test,y_pred))
49
-
50
- df['Mileage'].max()
51
-
52
-
53
- df['Type'].unique()
54
-
55
-
56
- df['Liter'].max()
57
-
58
- import streamlit as st
59
-
60
- def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
61
- input_data=pd.DataFrame({'Make':[make],
62
- 'Model':[model],
63
- 'Trim':[trim],
64
- 'Mileage':[mileage],
65
- 'Type':[car_type],
66
- 'Cylinder':[cylinder],
67
- 'Liter':[liter],
68
- 'Doors':[doors],
69
- 'Cruise':[cruise],
70
- 'Sound':[sound],
71
- 'Leather':[leather]})
72
- prediction=pipe.predict(input_data)[0]
73
- return prediction
74
- st.title("AI kullanarak II. El Araba Fiyatı Tahmin:blue_car: MuR@TY@P")
75
- st.write('Arabanın özelliklerini seçiniz')
76
- make=st.selectbox('Marka',df['Make'].unique())
77
- model=st.selectbox('Model',df[df['Make']==make]['Model'].unique())
78
- trim=st.selectbox('Trim',df[(df['Make']==make) &(df['Model']==model)]['Trim'].unique())
79
- mileage=st.number_input('Kilometre',100,200000)
80
- car_type=st.selectbox('Araç Tipi',df[(df['Make']==make) &(df['Model']==model)&(df['Trim']==trim)]['Type'].unique())
81
- cylinder=st.selectbox('Cylinder',df['Cylinder'].unique())
82
- liter=st.number_input('Yakıt hacmi',1,10)
83
- doors=st.selectbox('Kapı sayısı',df['Doors'].unique())
84
- cruise=st.radio('Hız Sbt.',[True,False])
85
- sound=st.radio('Ses Sis.',[True,False])
86
- leather=st.radio('Deri döşeme.',[True,False])
87
- if st.button('Tahmin'):
88
- pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
89
- st.write('Fiyat:$', round(pred[0],2))
90
-
91
-
92
-
93
-