Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,107 +1,56 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageDraw, ImageFont
|
3 |
import scipy.io.wavfile as wavfile
|
4 |
-
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
narrator = pipeline("text-to-speech",
|
8 |
-
|
9 |
-
|
10 |
-
object_detector = pipeline("object-detection",
|
11 |
-
model="facebook/detr-resnet-50")
|
12 |
|
13 |
def generate_audio(text):
|
14 |
# Generate the narrated text
|
15 |
narrated_text = narrator(text)
|
16 |
-
|
17 |
# Save the audio to a WAV file
|
18 |
-
wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
|
19 |
-
data=narrated_text["audio"][0])
|
20 |
-
|
21 |
-
# Return the path to the saved audio file
|
22 |
return "output.wav"
|
23 |
|
24 |
def read_objects(detection_objects):
|
25 |
-
# Initialize counters for each object label
|
26 |
object_counts = {}
|
27 |
-
|
28 |
-
# Count the occurrences of each label
|
29 |
for detection in detection_objects:
|
30 |
label = detection['label']
|
31 |
-
|
32 |
-
object_counts[label] += 1
|
33 |
-
else:
|
34 |
-
object_counts[label] = 1
|
35 |
-
|
36 |
-
# Generate the response string
|
37 |
response = "This picture contains"
|
38 |
labels = list(object_counts.keys())
|
39 |
for i, label in enumerate(labels):
|
40 |
-
response += f" {object_counts[label]} {label}"
|
41 |
-
if object_counts[label] > 1:
|
42 |
-
response += "s"
|
43 |
if i < len(labels) - 2:
|
44 |
response += ","
|
45 |
elif i == len(labels) - 2:
|
46 |
response += " and"
|
47 |
-
|
48 |
response += "."
|
49 |
-
|
50 |
return response
|
51 |
|
52 |
-
|
53 |
-
|
54 |
def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
|
55 |
-
"""
|
56 |
-
Draws bounding boxes on the given image based on the detections.
|
57 |
-
:param image: PIL.Image object
|
58 |
-
:param detections: List of detection results, where each result is a dictionary containing
|
59 |
-
'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin',
|
60 |
-
'ymin', 'xmax', 'ymax'.
|
61 |
-
:param font_path: Path to the TrueType font file to use for text.
|
62 |
-
:param font_size: Size of the font to use for text.
|
63 |
-
:return: PIL.Image object with bounding boxes drawn.
|
64 |
-
"""
|
65 |
-
# Make a copy of the image to draw on
|
66 |
draw_image = image.copy()
|
67 |
draw = ImageDraw.Draw(draw_image)
|
68 |
-
|
69 |
-
# Load custom font or default font if path not provided
|
70 |
if font_path:
|
71 |
font = ImageFont.truetype(font_path, font_size)
|
72 |
else:
|
73 |
-
# When font_path is not provided, load default font but it's size is fixed
|
74 |
font = ImageFont.load_default()
|
75 |
-
# Increase font size workaround by using a TTF font file, if needed, can download and specify the path
|
76 |
-
|
77 |
for detection in detections:
|
78 |
box = detection['box']
|
79 |
-
xmin = box['xmin']
|
80 |
-
ymin = box['ymin']
|
81 |
-
xmax = box['xmax']
|
82 |
-
ymax = box['ymax']
|
83 |
-
|
84 |
-
# Draw the bounding box
|
85 |
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
86 |
-
|
87 |
-
# Optionally, you can also draw the label and score
|
88 |
label = detection['label']
|
89 |
score = detection['score']
|
90 |
text = f"{label} {score:.2f}"
|
91 |
-
|
92 |
-
# Draw text with background rectangle for visibility
|
93 |
-
if font_path: # Use the custom font with increased size
|
94 |
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
95 |
else:
|
96 |
-
# Calculate text size using the default font
|
97 |
text_size = draw.textbbox((xmin, ymin), text)
|
98 |
-
|
99 |
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
100 |
draw.text((xmin, ymin), text, fill="white", font=font)
|
101 |
-
|
102 |
return draw_image
|
103 |
|
104 |
-
|
105 |
def detect_object(image):
|
106 |
raw_image = image
|
107 |
output = object_detector(raw_image)
|
@@ -110,10 +59,20 @@ def detect_object(image):
|
|
110 |
processed_audio = generate_audio(natural_text)
|
111 |
return processed_image, processed_audio
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageDraw, ImageFont
|
3 |
import scipy.io.wavfile as wavfile
|
|
|
4 |
from transformers import pipeline
|
5 |
|
6 |
+
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
|
7 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
|
|
|
|
|
|
8 |
|
9 |
def generate_audio(text):
|
10 |
# Generate the narrated text
|
11 |
narrated_text = narrator(text)
|
|
|
12 |
# Save the audio to a WAV file
|
13 |
+
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0])
|
|
|
|
|
|
|
14 |
return "output.wav"
|
15 |
|
16 |
def read_objects(detection_objects):
|
|
|
17 |
object_counts = {}
|
|
|
|
|
18 |
for detection in detection_objects:
|
19 |
label = detection['label']
|
20 |
+
object_counts[label] = object_counts.get(label, 0) + 1
|
|
|
|
|
|
|
|
|
|
|
21 |
response = "This picture contains"
|
22 |
labels = list(object_counts.keys())
|
23 |
for i, label in enumerate(labels):
|
24 |
+
response += f" {object_counts[label]} {label}" + ("s" if object_counts[label] > 1 else "")
|
|
|
|
|
25 |
if i < len(labels) - 2:
|
26 |
response += ","
|
27 |
elif i == len(labels) - 2:
|
28 |
response += " and"
|
|
|
29 |
response += "."
|
|
|
30 |
return response
|
31 |
|
|
|
|
|
32 |
def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
draw_image = image.copy()
|
34 |
draw = ImageDraw.Draw(draw_image)
|
|
|
|
|
35 |
if font_path:
|
36 |
font = ImageFont.truetype(font_path, font_size)
|
37 |
else:
|
|
|
38 |
font = ImageFont.load_default()
|
|
|
|
|
39 |
for detection in detections:
|
40 |
box = detection['box']
|
41 |
+
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
|
|
|
|
|
|
|
|
|
|
|
42 |
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
|
|
|
|
43 |
label = detection['label']
|
44 |
score = detection['score']
|
45 |
text = f"{label} {score:.2f}"
|
46 |
+
if font_path:
|
|
|
|
|
47 |
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
48 |
else:
|
|
|
49 |
text_size = draw.textbbox((xmin, ymin), text)
|
|
|
50 |
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
51 |
draw.text((xmin, ymin), text, fill="white", font=font)
|
|
|
52 |
return draw_image
|
53 |
|
|
|
54 |
def detect_object(image):
|
55 |
raw_image = image
|
56 |
output = object_detector(raw_image)
|
|
|
59 |
processed_audio = generate_audio(natural_text)
|
60 |
return processed_image, processed_audio
|
61 |
|
62 |
+
examples = [
|
63 |
+
["dogs.jpg"]
|
64 |
+
]
|
65 |
+
|
66 |
+
demo = gr.Interface(
|
67 |
+
fn=detect_object,
|
68 |
+
inputs=[gr.Image(label="Select Image", type="pil")],
|
69 |
+
outputs=[
|
70 |
+
gr.Image(label="Processed Image", type="pil"),
|
71 |
+
gr.Audio(label="Generated Audio")
|
72 |
+
],
|
73 |
+
title="Audio Described Object Detector",
|
74 |
+
description="This application highlights objects in the provided image and generates an audio description.",
|
75 |
+
examples=examples
|
76 |
+
)
|
77 |
+
|
78 |
+
demo.launch()
|