|
|
|
import os |
|
import streamlit as st |
|
import requests |
|
from transformers import pipeline |
|
import openai |
|
|
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
def img2txt(url): |
|
print("Initializing captioning model...") |
|
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") |
|
|
|
print("Generating text from the image...") |
|
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"] |
|
|
|
print(text) |
|
return text |
|
|
|
|
|
def txt2story(img_text, top_k, top_p, temperature): |
|
|
|
headers = {"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"} |
|
|
|
data = { |
|
"model": "togethercomputer/llama-2-70b-chat", |
|
"messages": [ |
|
{"role": "system", "content": '''As an experienced short story writer, write story title and then create a meaningful story influenced by provided words. |
|
Ensure stories conclude positively within 100 words. Remember the story must end within 100 words''', "temperature": temperature}, |
|
{"role": "user", "content": f"Here is input set of words: {img_text}", "temperature": temperature} |
|
], |
|
"top_k": top_k, |
|
"top_p": top_p, |
|
"temperature": temperature |
|
} |
|
|
|
response = requests.post("https://api.together.xyz/inference", headers=headers, json=data) |
|
|
|
story = response.json()["output"]["choices"][0]["text"] |
|
return story |
|
|
|
|
|
|
|
def txt2speech(text): |
|
print("Initializing text-to-speech conversion...") |
|
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" |
|
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"} |
|
payloads = {'inputs': text} |
|
|
|
response = requests.post(API_URL, headers=headers, json=payloads) |
|
|
|
with open('audio_story.mp3', 'wb') as file: |
|
file.write(response.content) |
|
|
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="π¨ Image-to-Audio/Text Story π§", page_icon="πΌοΈ") |
|
st.title("Turn the Image into Audio/Text Story") |
|
|
|
|
|
uploaded_file = st.file_uploader("# π· Upload an image...", type=["jpg", "jpeg", "png"]) |
|
|
|
|
|
st.sidebar.markdown("# LLM Inference Configuration Parameters") |
|
top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5) |
|
top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8) |
|
temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5) |
|
|
|
if uploaded_file is not None: |
|
|
|
bytes_data = uploaded_file.read() |
|
with open("uploaded_image.jpg", "wb") as file: |
|
file.write(bytes_data) |
|
|
|
st.image(uploaded_file, caption='πΌοΈ Uploaded Image', use_column_width=True) |
|
|
|
|
|
with st.spinner("## π€ AI is at Work! "): |
|
scenario = img2txt("uploaded_image.jpg") |
|
story = txt2story(scenario, top_k, top_p, temperature) |
|
txt2speech(story) |
|
|
|
st.markdown("---") |
|
st.markdown("## π Image Caption") |
|
st.write(scenario) |
|
|
|
st.markdown("---") |
|
st.markdown("## π Story") |
|
st.write(story) |
|
|
|
st.markdown("---") |
|
st.markdown("## π§ Audio Story") |
|
st.audio("audio_story.mp3") |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|
|
st.markdown("### Credits") |
|
st.caption(''' |
|
Made by Nithin John\n |
|
Utilizes Image-to-text, Text Generation, Text-to-speech Transformer Models\n |
|
Gratitude to Streamlit, π€ Spaces for Deployment & Hosting |
|
''') |