Robin-7b / lmflow /datasets /dataset.py
NingKanae's picture
Duplicate from OptimalScale/Robin-7b
98f2419
raw
history blame
8.94 kB
#!/usr/bin/env python
# coding=utf-8
"""This Python code defines a class Dataset with methods for initializing, loading,
and manipulating datasets from different backends such as Hugging Face and JSON.
The `Dataset` class includes methods for loading datasets from a dictionary and a Hugging
Face dataset, mapping datasets, and retrieving the backend dataset and arguments.
"""
# Importing necessary libraries and modules
import json
from pathlib import Path
from typing import Optional
from datasets import load_dataset
from datasets import Dataset as HFDataset
from lmflow.args import DatasetArguments
DATASET_TYPES = [
"text_only",
"text2text",
]
KEY_TYPE = "type"
KEY_INSTANCES = "instances"
class Dataset:
r"""
Initializes the Dataset object with the given parameters.
Parameters
------------
data_args : DatasetArguments object.
Contains the arguments required to load the dataset.
backend : str, default="huggingface"
A string representing the dataset backend. Defaults to "huggingface".
args : Optional.
Positional arguments.
kwargs : Optional.
Keyword arguments.
"""
def __init__(self, data_args=None, backend: str="huggingface", *args, **kwargs):
self.data_args = data_args
self.backend = backend
self.backend_dataset = None
self.type = None # Original type of the dataset
self.dataset_path = data_args.dataset_path
if data_args.dataset_path is None:
return
if backend == "huggingface":
data_files = [
x.absolute().as_posix()
for x in Path(self.dataset_path).glob("*.json")
]
# Iterate through all the files and ensure they have the same data type
for single_file in data_files:
with open(single_file) as fin:
json_data = json.load(fin)
if KEY_TYPE not in json_data.keys():
raise ValueError(
f'"{KEY_TYPE}" field must be specified for data, e.g.'
'{\n'
f' "{KEY_TYPE}: "text_only",\n'
f' "{KEY_INSTANCES}": [\n'
' { "text": "Sentence 1: This is a sentence." }\n'
' { "text": "Sentence 2: This is another sentence." }\n'
f' ]\n'
'}'
)
if self.type is None:
self.type = json_data[KEY_TYPE]
elif self.type != json_data[KEY_TYPE]:
raise ValueError(
'All task files must have same data types. Previous'
f' files have type "{self.type}", but in file'
f' {single_file}, it has type "{self.type}".'
)
# Load the dataset using the HuggingFace dataset library
extensions = "json"
raw_dataset = load_dataset(
extensions,
data_files=data_files,
field=KEY_INSTANCES,
split="train",
use_auth_token=None,
)
self.backend_dataset = raw_dataset
elif backend == "json":
# TODO (@Jiachun)
pass
else:
raise NotImplementedError(f'Unsupported dataset backend "{backend}"')
def _check_data_type(self):
# TODO: check if data type and data structure matches, raise messages
# with hints
pass
def from_dict(self, dict_obj: dict, *args, **kwargs):
r"""
Create a Dataset object from a dictionary.
Return a Dataset given a dict with format:
{
"type": TYPE,
"instances": [
{
"key_1": VALUE_1.1,
"key_2": VALUE_1.2,
...
},
{
"key_1": VALUE_2.1,
"key_2": VALUE_2.2,
...
},
...
]
}
Parameters
-----------
dict_obj : dict.
A dictionary containing the dataset information.
args : Optional.
Positional arguments.
kwargs : Optional.
Keyword arguments.
Returns
---------
self : Dataset object.
"""
if self.backend == "huggingface":
if KEY_TYPE not in dict_obj:
raise ValueError(
f'"{KEY_TYPE}" must be provided to initialize a dataset'
)
if KEY_INSTANCES not in dict_obj:
raise ValueError(
f'"{KEY_INSTANCES}" must be provided to initialize a dataset'
)
self.type = dict_obj[KEY_TYPE]
hf_dict = {}
if len(dict_obj[KEY_INSTANCES]) > 0:
for key in dict_obj[KEY_INSTANCES][0].keys():
hf_dict[key] = [ instance[key] for instance in dict_obj[KEY_INSTANCES] ]
self.backend_dataset = HFDataset.from_dict(hf_dict, *args, **kwargs)
return self
else:
raise NotImplementedError(
f'Currently .from_dict is not supported for backend "{backend}"'
)
@classmethod
def create_from_dict(cls, dict_obj, *args, **kwargs):
r"""
Returns
--------
Returns a Dataset object given a dict.
"""
empty_data_args = DatasetArguments(dataset_path=None)
dataset = Dataset(empty_data_args)
return dataset.from_dict(dict_obj)
def to_dict(self):
r"""
Returns
---------
Return a dict represents the dataset:
{
"type": TYPE,
"instances": [
{
"key_1": VALUE_1.1,
"key_2": VALUE_1.2,
...
},
{
"key_1": VALUE_2.1,
"key_2": VALUE_2.2,
...
},
...
]
}
A python dict object represents the content of this dataset.
"""
if self.backend == "huggingface":
dict_obj = {}
dict_obj[KEY_TYPE] = self.get_type()
hf_dict = self.backend_dataset.to_dict()
dict_obj[KEY_INSTANCES] = []
first_key = None
for key in hf_dict.keys():
first_key = key
break
if first_key is not None:
num_instances = len(hf_dict[first_key])
dict_obj[KEY_INSTANCES] = [
{
key: hf_dict[key][i] for key in hf_dict.keys()
}
for i in range(num_instances)
]
return dict_obj
else:
raise NotImplementedError(
f'Current .to_dict is not supported for backend "{backend}"'
)
def map(self, *args, **kwargs):
r"""
Parameters
------------
args : Optional.
Positional arguments.
kwargs : Optional.
Keyword arguments.
Returns
---------
self : Dataset object.
"""
# If the dataset uses Hugging Face as the backend,
# call the `map()` function of the Hugging Face backend dataset
if self.backend == "huggingface":
# Set the mapped dataset as the backend dataset of the current dataset
mapped_backend_dataset = self.backend_dataset.map(*args, **kwargs)
self.backend_dataset = mapped_backend_dataset
return self
else:
# If the backend is not Hugging Face, raise a NotImplementedError
raise NotImplementedError(
f'Currently .map is not supported for backend "{backend}"'
)
def get_backend(self) -> Optional[str]:
r"""
Returns
---------
self.backend
"""
return self.backend
def get_backend_dataset(self):
r"""
Returns
---------
self.backend_dataset
"""
return self.backend_dataset
def get_data_args(self):
r"""
Returns
---------
self.data_args
"""
return self.data_args
def get_type(self):
r"""
Returns
---------
self.type
"""
return self.type