|
from ultralytics import YOLO
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import gradio as gr
|
|
import cv2
|
|
import torch
|
|
from PIL import Image
|
|
|
|
|
|
model = YOLO('checkpoints/FastSAM.pt')
|
|
|
|
|
|
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
|
|
|
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
|
|
|
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
|
|
|
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
|
|
|
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
|
|
|
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
|
|
|
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
|
|
|
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
|
|
|
"""
|
|
|
|
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
|
|
["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
|
["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
|
|
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
|
|
|
default_example = examples[0]
|
|
|
|
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
|
|
|
def fast_process(annotations, image, high_quality, device, scale):
|
|
if isinstance(annotations[0],dict):
|
|
annotations = [annotation['segmentation'] for annotation in annotations]
|
|
|
|
original_h = image.height
|
|
original_w = image.width
|
|
if high_quality == True:
|
|
if isinstance(annotations[0],torch.Tensor):
|
|
annotations = np.array(annotations.cpu())
|
|
for i, mask in enumerate(annotations):
|
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
|
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
|
if device == 'cpu':
|
|
annotations = np.array(annotations)
|
|
inner_mask = fast_show_mask(annotations,
|
|
plt.gca(),
|
|
bbox=None,
|
|
points=None,
|
|
pointlabel=None,
|
|
retinamask=True,
|
|
target_height=original_h,
|
|
target_width=original_w)
|
|
else:
|
|
if isinstance(annotations[0],np.ndarray):
|
|
annotations = torch.from_numpy(annotations)
|
|
inner_mask = fast_show_mask_gpu(annotations,
|
|
plt.gca(),
|
|
bbox=None,
|
|
points=None,
|
|
pointlabel=None)
|
|
if isinstance(annotations, torch.Tensor):
|
|
annotations = annotations.cpu().numpy()
|
|
|
|
if high_quality:
|
|
contour_all = []
|
|
temp = np.zeros((original_h, original_w,1))
|
|
for i, mask in enumerate(annotations):
|
|
if type(mask) == dict:
|
|
mask = mask['segmentation']
|
|
annotation = mask.astype(np.uint8)
|
|
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
for contour in contours:
|
|
contour_all.append(contour)
|
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
|
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
|
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
image = image.convert('RGBA')
|
|
|
|
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
|
image.paste(overlay_inner, (0, 0), overlay_inner)
|
|
|
|
if high_quality:
|
|
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
|
image.paste(overlay_contour, (0, 0), overlay_contour)
|
|
|
|
return image
|
|
|
|
|
|
def fast_show_mask(annotation, ax, bbox=None,
|
|
points=None, pointlabel=None,
|
|
retinamask=True, target_height=960,
|
|
target_width=960):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
|
|
areas = np.sum(annotation, axis=(1, 2))
|
|
sorted_indices = np.argsort(areas)[::1]
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).argmax(axis=0)
|
|
color = np.random.random((msak_sum,1,1,3))
|
|
transparency = np.ones((msak_sum,1,1,1)) * 0.6
|
|
visual = np.concatenate([color,transparency],axis=-1)
|
|
mask_image = np.expand_dims(annotation,-1) * visual
|
|
|
|
mask = np.zeros((height,weight,4))
|
|
|
|
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
mask[h_indices, w_indices, :] = mask_image[indices]
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
|
if points is not None:
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
|
|
|
if retinamask==False:
|
|
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
return mask
|
|
|
|
|
|
def fast_show_mask_gpu(annotation, ax,
|
|
bbox=None, points=None,
|
|
pointlabel=None):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
areas = torch.sum(annotation, dim=(1, 2))
|
|
sorted_indices = torch.argsort(areas, descending=False)
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
|
color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
|
|
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
|
|
visual = torch.cat([color,transparency],dim=-1)
|
|
mask_image = torch.unsqueeze(annotation,-1) * visual
|
|
|
|
mask = torch.zeros((height,weight,4)).to(annotation.device)
|
|
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
mask[h_indices, w_indices, :] = mask_image[indices]
|
|
mask_cpu = mask.cpu().numpy()
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
|
if points is not None:
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
|
return mask_cpu
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
|
|
point = (evt.index[0],evt.index[1])
|
|
input_size = int(input_size)
|
|
|
|
|
|
w, h = input.size
|
|
scale = input_size / max(w, h)
|
|
new_w = int(w * scale)
|
|
new_h = int(h * scale)
|
|
input = input.resize((new_w, new_h))
|
|
|
|
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
|
|
fig = fast_process(annotations=results[0].masks.data,
|
|
image=input, high_quality=high_visual_quality,
|
|
device=device, scale=(1024 // input_size),
|
|
points=)
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
|
|
|
|
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
|
|
|
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)')
|
|
|
|
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
with gr.Row():
|
|
|
|
gr.Markdown(title)
|
|
|
|
|
|
|
|
|
|
with gr.Row(variant="panel"):
|
|
with gr.Column(scale=1):
|
|
cond_img.render()
|
|
|
|
with gr.Column(scale=1):
|
|
segm_img.render()
|
|
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_size_slider.render()
|
|
|
|
with gr.Row():
|
|
vis_check = gr.Checkbox(value=True, label='high_visual_quality')
|
|
|
|
with gr.Column():
|
|
segment_btn = gr.Button("Segment Anything", variant='primary')
|
|
|
|
|
|
|
|
|
|
gr.Markdown("Try some of the examples below ⬇️")
|
|
gr.Examples(examples=examples,
|
|
inputs=[cond_img],
|
|
outputs=segm_img,
|
|
fn=segment_image,
|
|
cache_examples=True,
|
|
examples_per_page=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column():
|
|
with gr.Accordion("Advanced options", open=False):
|
|
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
|
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
|
|
|
|
|
gr.Markdown(description)
|
|
|
|
cond_img.select(segment_image, [], input_img)
|
|
|
|
segment_btn.click(segment_image,
|
|
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
|
outputs=segm_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.queue()
|
|
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|