File size: 9,608 Bytes
6e601ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import sys
from argparse import ArgumentParser
from pathlib import Path
from comet_ml import Experiment

import numpy as np
import torch
import yaml
from PIL import Image
from skimage.color import gray2rgb
from skimage.io import imread
from skimage.transform import resize
from skimage.util import img_as_ubyte
from tqdm import tqdm

sys.path.append(str(Path(__file__).resolve().parent.parent))

import climategan

GROUND_MODEL = "/miniscratch/_groups/ccai/experiments/runs/ablation-v1/out--ground"


def uint8(array):
    return array.astype(np.uint8)


def crop_and_resize(image_path, label_path):
    """
    Resizes an image so that it keeps the aspect ratio and the smallest dimensions
    is 640, then crops this resized image in its center so that the output is 640x640
    without aspect ratio distortion

    Args:
        image_path (Path or str): Path to an image
        label_path (Path or str): Path to the image's associated label

    Returns:
        tuple((np.ndarray, np.ndarray)): (new image, new label)
    """

    img = imread(image_path)
    lab = imread(label_path)

    # if img.shape[-1] == 4:
    #     img = uint8(rgba2rgb(img) * 255)

    # TODO: remove (debug)
    if img.shape[:2] != lab.shape[:2]:
        print(
            "\nWARNING: shape mismatch: im -> {}, lab -> {}".format(
                image_path.name, label_path.name
            )
        )
        # breakpoint()

    # resize keeping aspect ratio: smallest dim is 640
    h, w = img.shape[:2]
    if h < w:
        size = (640, int(640 * w / h))
    else:
        size = (int(640 * h / w), 640)

    r_img = resize(img, size, preserve_range=True, anti_aliasing=True)
    r_img = uint8(r_img)

    r_lab = resize(lab, size, preserve_range=True, anti_aliasing=False, order=0)
    r_lab = uint8(r_lab)

    # crop in the center
    H, W = r_img.shape[:2]

    top = (H - 640) // 2
    left = (W - 640) // 2

    rc_img = r_img[top : top + 640, left : left + 640, :]
    rc_lab = (
        r_lab[top : top + 640, left : left + 640, :]
        if r_lab.ndim == 3
        else r_lab[top : top + 640, left : left + 640]
    )

    return rc_img, rc_lab


def load_ground(ground_output_path, ref_image_path):
    gop = Path(ground_output_path)
    rip = Path(ref_image_path)

    ground_paths = list((gop / "eval-metrics" / "pred").glob(f"{rip.stem}.jpg")) + list(
        (gop / "eval-metrics" / "pred").glob(f"{rip.stem}.png")
    )
    if len(ground_paths) == 0:
        raise ValueError(
            f"Could not find a ground match in {str(gop)} for image {str(rip)}"
        )
    elif len(ground_paths) > 1:
        raise ValueError(
            f"Found more than 1 ground match in {str(gop)} for image {str(rip)}:"
            + f" {list(map(str, ground_paths))}"
        )
    ground_path = ground_paths[0]
    _, ground = crop_and_resize(rip, ground_path)
    ground = (ground > 0).astype(np.float32)
    return torch.from_numpy(ground).unsqueeze(0).unsqueeze(0).cuda()


def parse_args():
    parser = ArgumentParser()
    parser.add_argument("-y", "--yaml", help="Path to a list of models")
    parser.add_argument(
        "--disable_loading",
        action="store_true",
        default=False,
        help="Disable loading of existing inferences",
    )
    parser.add_argument(
        "-t", "--tags", nargs="*", help="Comet.ml tags", default=[], type=str
    )
    parser.add_argument(
        "--tasks",
        nargs="*",
        help="Comet.ml tags",
        default=["x", "d", "s", "m", "mx", "p"],
        type=str,
    )
    args = parser.parse_args()

    print("Received args:")
    print(vars(args))

    return args


def load_images_and_labels(
    path="/miniscratch/_groups/ccai/data/omnigan/masker-test-set",
):
    p = Path(path)
    ims_path = p / "imgs"
    lab_path = p / "labels"

    ims = sorted(climategan.utils.find_images(ims_path), key=lambda x: x.name)
    labs = sorted(
        climategan.utils.find_images(lab_path),
        key=lambda x: x.name.replace("_labeled.", "."),
    )

    xs = climategan.transforms.PrepareInference()(ims)
    ys = climategan.transforms.PrepareInference(is_label=True)(labs)

    return xs, ys, ims, labs


def load_inferences(inf_path, im_paths):
    try:
        assert inf_path.exists()
        assert sorted([i.stem for i in im_paths]) == sorted(
            [i.stem for i in inf_path.glob("*.pt")]
        )
        return [torch.load(str(i)) for i in tqdm(list(inf_path.glob("*.pt")))]
    except Exception as e:
        print()
        print(e)
        print("Aborting Loading")
        print()
        return None


def get_or_load_inferences(
    m_path, device, xs, is_ground, im_paths, ground_model, try_load=True
):
    inf_path = Path(m_path) / "inferences"
    if try_load:
        print("Trying to load existing inferences:")
        outputs = load_inferences(inf_path, im_paths)
        if outputs is not None:
            print("Successfully loaded existing inferences")
            return outputs

    trainer = climategan.trainer.Trainer.resume_from_path(
        m_path if not is_ground else ground_model,
        inference=True,
        new_exp=None,
        device=device,
    )

    inf_path.mkdir(exist_ok=True)
    outputs = []
    for i, x in enumerate(tqdm(xs)):
        x = x.to(trainer.device)
        if not is_ground:
            out = trainer.G.decode(x=x)
        else:
            out = {"m": load_ground(GROUND_MODEL, im_paths[i])}
        out["p"] = trainer.G.paint(out["m"] > 0.5, x)
        out["x"] = x
        inference = {k: v.cpu() for k, v in out.items()}
        outputs.append(inference)
        torch.save(inference, inf_path / f"{im_paths[i].stem}.pt")
    print()

    return outputs


def numpify(outputs):
    nps = []
    print("Numpifying...")
    for o in tqdm(outputs):
        x = (o["x"][0].permute(1, 2, 0).numpy() + 1) / 2
        m = o["m"]
        m = (m[0, 0, :, :].numpy() > 0.5).astype(np.uint8)
        p = (o["p"][0].permute(1, 2, 0).numpy() + 1) / 2
        data = {"m": m, "p": p, "x": x}
        if "s" in o:
            s = climategan.data.decode_segmap_merged_labels(o["s"], "r", False) / 255.0
            data["s"] = s[0].permute(1, 2, 0).numpy()
        if "d" in o:
            d = climategan.tutils.normalize_tensor(o["d"]).squeeze().numpy()
            data["d"] = d
        nps.append({k: img_as_ubyte(v) for k, v in data.items()})
    return nps


def concat_npy_for_model(data, tasks):
    assert "m" in data
    assert "x" in data
    assert "p" in data

    x = mask = depth = seg = painted = masked = None

    x = data["x"]
    painted = data["p"]
    mask = (gray2rgb(data["m"]) * 255).astype(np.uint8)
    painted = data["p"]
    masked = (1 - gray2rgb(data["m"])) * x

    concats = []

    if "d" in data:
        depth = img_as_ubyte(
            gray2rgb(
                resize(data["d"], data["x"].shape[:2], anti_aliasing=True, order=1)
            )
        )
    else:
        depth = np.ones_like(data["x"]) * 255

    if "s" in data:
        seg = img_as_ubyte(
            resize(data["s"], data["x"].shape[:2], anti_aliasing=False, order=0)
        )
    else:
        seg = np.ones_like(data["x"]) * 255

    for t in tasks:
        if t == "x":
            concats.append(x)
        if t == "m":
            concats.append(mask)
        elif t == "mx":
            concats.append(masked)
        elif t == "d":
            concats.append(depth)
        elif t == "s":
            concats.append(seg)
        elif t == "p":
            concats.append(painted)

    row = np.concatenate(concats, axis=1)

    return row


if __name__ == "__main__":
    args = parse_args()

    with open(args.yaml, "r") as f:
        maskers = yaml.safe_load(f)
    if "models" in maskers:
        maskers = maskers["models"]

    load = not args.disable_loading
    tags = args.tags
    tasks = args.tasks

    ground_model = None
    for m in maskers:
        if "ground" not in maskers:
            ground_model = m
            break
    if ground_model is None:
        raise ValueError("Could not find a non-ground model to get a painter")

    device = torch.device("cpu")
    torch.set_grad_enabled(False)

    xs, ys, im_paths, lab_paths = load_images_and_labels()

    np_outs = {}
    names = []

    for m_path in maskers:

        opt_path = Path(m_path) / "opts.yaml"
        with opt_path.open("r") as f:
            opt = yaml.safe_load(f)

        name = (
            ", ".join(
                [
                    t
                    for t in sorted(opt["comet"]["tags"])
                    if "branch" not in t and "ablation" not in t and "trash" not in t
                ]
            )
            if "--ground" not in m_path
            else "ground"
        )
        names.append(name)

        is_ground = name == "ground"

        print("#" * 100)
        print("\n>>> Processing", name)
        print()

        outputs = get_or_load_inferences(
            m_path, device, xs, is_ground, im_paths, ground_model, load
        )
        nps = numpify(outputs)

        np_outs[name] = nps

    exp = Experiment(project_name="climategan-inferences", display_summary_level=0)
    exp.log_parameter("names", names)
    exp.add_tags(tags)

    for i in tqdm(range(len(xs))):
        all_models_for_image = []
        for name in names:
            xpmds = concat_npy_for_model(np_outs[name][i], tasks)
            all_models_for_image.append(xpmds)
        full_im = np.concatenate(all_models_for_image, axis=0)
        pil_im = Image.fromarray(full_im)
        exp.log_image(pil_im, name=im_paths[i].stem.replace(".", "_"), step=i)