stable-diffusion-webui-forge / modules_forge /supported_controlnet.py
NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
import os
import torch
from huggingface_guess.detection import unet_config_from_diffusers_unet, model_config_from_unet
from huggingface_guess.utils import unet_to_diffusers
from backend import memory_management
from backend.operations import using_forge_operations
from backend.nn.cnets import cldm
from backend.patcher.controlnet import ControlLora, ControlNet, load_t2i_adapter, apply_controlnet_advanced
from modules_forge.shared import add_supported_control_model
class ControlModelPatcher:
@staticmethod
def try_build_from_state_dict(state_dict, ckpt_path):
return None
def __init__(self, model_patcher=None):
self.model_patcher = model_patcher
self.strength = 1.0
self.start_percent = 0.0
self.end_percent = 1.0
self.positive_advanced_weighting = None
self.negative_advanced_weighting = None
self.advanced_frame_weighting = None
self.advanced_sigma_weighting = None
self.advanced_mask_weighting = None
def process_after_running_preprocessors(self, process, params, *args, **kwargs):
return
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
return
def process_after_every_sampling(self, process, params, *args, **kwargs):
return
class ControlNetPatcher(ControlModelPatcher):
@staticmethod
def try_build_from_state_dict(controlnet_data, ckpt_path):
if "lora_controlnet" in controlnet_data:
return ControlNetPatcher(ControlLora(controlnet_data))
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: # diffusers format
unet_dtype = memory_management.unet_dtype()
controlnet_config = unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
diffusers_keys = unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
print("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data)
if net is None:
return None
return ControlNetPatcher(net)
if controlnet_config is None:
unet_dtype = memory_management.unet_dtype()
controlnet_config = model_config_from_unet(controlnet_data, prefix, True).unet_config
controlnet_config['dtype'] = unet_dtype
load_device = memory_management.get_torch_device()
computation_dtype = memory_management.get_computation_dtype(load_device)
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
with using_forge_operations(dtype=unet_dtype, manual_cast_enabled=computation_dtype != unet_dtype):
control_model = cldm.ControlNet(**controlnet_config).to(dtype=unet_dtype)
if pth:
if 'difference' in controlnet_data:
print("WARNING: Your controlnet model is diff version rather than official float16 model. "
"Please use an official float16/float32 model for robust performance.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
print(missing, unexpected)
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"):
# TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=computation_dtype)
return ControlNetPatcher(control)
def __init__(self, model_patcher):
super().__init__(model_patcher)
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
unet = process.sd_model.forge_objects.unet
unet = apply_controlnet_advanced(
unet=unet,
controlnet=self.model_patcher,
image_bchw=cond,
strength=self.strength,
start_percent=self.start_percent,
end_percent=self.end_percent,
positive_advanced_weighting=self.positive_advanced_weighting,
negative_advanced_weighting=self.negative_advanced_weighting,
advanced_frame_weighting=self.advanced_frame_weighting,
advanced_sigma_weighting=self.advanced_sigma_weighting,
advanced_mask_weighting=self.advanced_mask_weighting
)
process.sd_model.forge_objects.unet = unet
return
add_supported_control_model(ControlNetPatcher)