Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from huggingface_guess.detection import unet_config_from_diffusers_unet, model_config_from_unet | |
from huggingface_guess.utils import unet_to_diffusers | |
from backend import memory_management | |
from backend.operations import using_forge_operations | |
from backend.nn.cnets import cldm | |
from backend.patcher.controlnet import ControlLora, ControlNet, load_t2i_adapter, apply_controlnet_advanced | |
from modules_forge.shared import add_supported_control_model | |
class ControlModelPatcher: | |
def try_build_from_state_dict(state_dict, ckpt_path): | |
return None | |
def __init__(self, model_patcher=None): | |
self.model_patcher = model_patcher | |
self.strength = 1.0 | |
self.start_percent = 0.0 | |
self.end_percent = 1.0 | |
self.positive_advanced_weighting = None | |
self.negative_advanced_weighting = None | |
self.advanced_frame_weighting = None | |
self.advanced_sigma_weighting = None | |
self.advanced_mask_weighting = None | |
def process_after_running_preprocessors(self, process, params, *args, **kwargs): | |
return | |
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs): | |
return | |
def process_after_every_sampling(self, process, params, *args, **kwargs): | |
return | |
class ControlNetPatcher(ControlModelPatcher): | |
def try_build_from_state_dict(controlnet_data, ckpt_path): | |
if "lora_controlnet" in controlnet_data: | |
return ControlNetPatcher(ControlLora(controlnet_data)) | |
controlnet_config = None | |
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: # diffusers format | |
unet_dtype = memory_management.unet_dtype() | |
controlnet_config = unet_config_from_diffusers_unet(controlnet_data, unet_dtype) | |
diffusers_keys = unet_to_diffusers(controlnet_config) | |
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" | |
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
k_in = "controlnet_down_blocks.{}{}".format(count, s) | |
k_out = "zero_convs.{}.0{}".format(count, s) | |
if k_in not in controlnet_data: | |
loop = False | |
break | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
if count == 0: | |
k_in = "controlnet_cond_embedding.conv_in{}".format(s) | |
else: | |
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) | |
k_out = "input_hint_block.{}{}".format(count * 2, s) | |
if k_in not in controlnet_data: | |
k_in = "controlnet_cond_embedding.conv_out{}".format(s) | |
loop = False | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
new_sd = {} | |
for k in diffusers_keys: | |
if k in controlnet_data: | |
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) | |
leftover_keys = controlnet_data.keys() | |
if len(leftover_keys) > 0: | |
print("leftover keys:", leftover_keys) | |
controlnet_data = new_sd | |
pth_key = 'control_model.zero_convs.0.0.weight' | |
pth = False | |
key = 'zero_convs.0.0.weight' | |
if pth_key in controlnet_data: | |
pth = True | |
key = pth_key | |
prefix = "control_model." | |
elif key in controlnet_data: | |
prefix = "" | |
else: | |
net = load_t2i_adapter(controlnet_data) | |
if net is None: | |
return None | |
return ControlNetPatcher(net) | |
if controlnet_config is None: | |
unet_dtype = memory_management.unet_dtype() | |
controlnet_config = model_config_from_unet(controlnet_data, prefix, True).unet_config | |
controlnet_config['dtype'] = unet_dtype | |
load_device = memory_management.get_torch_device() | |
computation_dtype = memory_management.get_computation_dtype(load_device) | |
controlnet_config.pop("out_channels") | |
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] | |
with using_forge_operations(dtype=unet_dtype, manual_cast_enabled=computation_dtype != unet_dtype): | |
control_model = cldm.ControlNet(**controlnet_config).to(dtype=unet_dtype) | |
if pth: | |
if 'difference' in controlnet_data: | |
print("WARNING: Your controlnet model is diff version rather than official float16 model. " | |
"Please use an official float16/float32 model for robust performance.") | |
class WeightsLoader(torch.nn.Module): | |
pass | |
w = WeightsLoader() | |
w.control_model = control_model | |
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) | |
else: | |
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) | |
print(missing, unexpected) | |
global_average_pooling = False | |
filename = os.path.splitext(ckpt_path)[0] | |
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): | |
# TODO: smarter way of enabling global_average_pooling | |
global_average_pooling = True | |
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=computation_dtype) | |
return ControlNetPatcher(control) | |
def __init__(self, model_patcher): | |
super().__init__(model_patcher) | |
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs): | |
unet = process.sd_model.forge_objects.unet | |
unet = apply_controlnet_advanced( | |
unet=unet, | |
controlnet=self.model_patcher, | |
image_bchw=cond, | |
strength=self.strength, | |
start_percent=self.start_percent, | |
end_percent=self.end_percent, | |
positive_advanced_weighting=self.positive_advanced_weighting, | |
negative_advanced_weighting=self.negative_advanced_weighting, | |
advanced_frame_weighting=self.advanced_frame_weighting, | |
advanced_sigma_weighting=self.advanced_sigma_weighting, | |
advanced_mask_weighting=self.advanced_mask_weighting | |
) | |
process.sd_model.forge_objects.unet = unet | |
return | |
add_supported_control_model(ControlNetPatcher) | |