NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
import dataclasses
import torch
import k_diffusion
import numpy as np
from scipy import stats
from modules import shared
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / sigma
k_diffusion.sampling.to_d = to_d
@dataclasses.dataclass
class Scheduler:
name: str
label: str
function: any
default_rho: float = -1
need_inner_model: bool = False
aliases: list = None
def uniform(n, sigma_min, sigma_max, inner_model, device):
return inner_model.get_sigmas(n).to(device)
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
sigs = [
inner_model.t_to_sigma(ts)
for ts in torch.linspace(start, end, n + 1)[:-1]
]
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
if shared.sd_model.is_sdxl:
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
else:
# Default to SD 1.5 sigmas.
sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)
return torch.FloatTensor(sigmas).to(device)
def kl_optimal(n, sigma_min, sigma_max, device):
alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
step_indices = torch.arange(n + 1, device=device)
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
return sigmas
def simple_scheduler(n, sigma_min, sigma_max, inner_model, device):
sigs = []
ss = len(inner_model.sigmas) / n
for x in range(n):
sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])]
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
if sgm:
timesteps = torch.linspace(start, end, n + 1)[:-1]
else:
timesteps = torch.linspace(start, end, n)
sigs = []
for x in range(len(timesteps)):
ts = timesteps[x]
sigs.append(inner_model.t_to_sigma(ts))
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
sigs = []
ss = max(len(inner_model.sigmas) // n, 1)
x = 1
while x < len(inner_model.sigmas):
sigs += [float(inner_model.sigmas[x])]
x += ss
sigs = sigs[::-1]
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
def beta_scheduler(n, sigma_min, sigma_max, inner_model, device):
# From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) """
alpha = shared.opts.beta_dist_alpha
beta = shared.opts.beta_dist_beta
timesteps = 1 - np.linspace(0, 1, n)
timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps]
sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps]
sigmas += [0.0]
return torch.FloatTensor(sigmas).to(device)
def turbo_scheduler(n, sigma_min, sigma_max, inner_model, device):
unet = inner_model.inner_model.forge_objects.unet
timesteps = torch.flip(torch.arange(1, n + 1) * float(1000.0 / n) - 1, (0,)).round().long().clip(0, 999)
sigmas = unet.model.predictor.sigma(timesteps)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
return sigmas.to(device)
def get_align_your_steps_sigmas_GITS(n, sigma_min, sigma_max, device):
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
if shared.sd_model.is_sdxl:
sigmas = [14.615, 4.734, 2.567, 1.529, 0.987, 0.652, 0.418, 0.268, 0.179, 0.127, 0.029]
else:
sigmas = [14.615, 4.617, 2.507, 1.236, 0.702, 0.402, 0.240, 0.156, 0.104, 0.094, 0.029]
if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)
return torch.FloatTensor(sigmas).to(device)
def ays_11_sigmas(n, sigma_min, sigma_max, device='cpu'):
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
if shared.sd_model.is_sdxl:
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
else:
sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)
return torch.FloatTensor(sigmas).to(device)
def ays_32_sigmas(n, sigma_min, sigma_max, device='cpu'):
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
if shared.sd_model.is_sdxl:
sigmas = [14.61500000000000000, 11.14916180000000000, 8.505221270000000000, 6.488271510000000000, 5.437074020000000000, 4.603986190000000000, 3.898547040000000000, 3.274074570000000000, 2.743965270000000000, 2.299686590000000000, 1.954485140000000000, 1.671087150000000000, 1.428781520000000000, 1.231810090000000000, 1.067896490000000000, 0.925794430000000000, 0.802908860000000000, 0.696601210000000000, 0.604369030000000000, 0.528525520000000000, 0.467733440000000000, 0.413933790000000000, 0.362581860000000000, 0.310085170000000000, 0.265189250000000000, 0.223264610000000000, 0.176538770000000000, 0.139591920000000000, 0.105873810000000000, 0.055193690000000000, 0.028773340000000000, 0.015000000000000000]
else:
sigmas = [14.61500000000000000, 11.23951352000000000, 8.643630810000000000, 6.647294240000000000, 5.572508620000000000, 4.716485460000000000, 3.991960650000000000, 3.519560900000000000, 3.134904660000000000, 2.792287880000000000, 2.487736280000000000, 2.216638650000000000, 1.975083510000000000, 1.779317200000000000, 1.614753350000000000, 1.465409530000000000, 1.314849000000000000, 1.166424970000000000, 1.034755470000000000, 0.915737440000000000, 0.807481690000000000, 0.712023610000000000, 0.621739000000000000, 0.530652020000000000, 0.452909600000000000, 0.374914550000000000, 0.274618190000000000, 0.201152900000000000, 0.141058730000000000, 0.066828810000000000, 0.031661210000000000, 0.015000000000000000]
if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)
return torch.FloatTensor(sigmas).to(device)
schedulers = [
Scheduler('automatic', 'Automatic', None),
Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True),
Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
Scheduler('beta', 'Beta', beta_scheduler, need_inner_model=True),
Scheduler('turbo', 'Turbo', turbo_scheduler, need_inner_model=True),
Scheduler('align_your_steps_GITS', 'Align Your Steps GITS', get_align_your_steps_sigmas_GITS),
Scheduler('align_your_steps_11', 'Align Your Steps 11', ays_11_sigmas),
Scheduler('align_your_steps_32', 'Align Your Steps 32', ays_32_sigmas),
]
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}