File size: 9,510 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import dataclasses
import torch
import k_diffusion
import numpy as np
from scipy import stats

from modules import shared


def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / sigma


k_diffusion.sampling.to_d = to_d


@dataclasses.dataclass
class Scheduler:
    name: str
    label: str
    function: any

    default_rho: float = -1
    need_inner_model: bool = False
    aliases: list = None


def uniform(n, sigma_min, sigma_max, inner_model, device):
    return inner_model.get_sigmas(n).to(device)


def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
    start = inner_model.sigma_to_t(torch.tensor(sigma_max))
    end = inner_model.sigma_to_t(torch.tensor(sigma_min))
    sigs = [
        inner_model.t_to_sigma(ts)
        for ts in torch.linspace(start, end, n + 1)[:-1]
    ]
    sigs += [0.0]
    return torch.FloatTensor(sigs).to(device)


def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
    # https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
    def loglinear_interp(t_steps, num_steps):
        """
        Performs log-linear interpolation of a given array of decreasing numbers.
        """
        xs = np.linspace(0, 1, len(t_steps))
        ys = np.log(t_steps[::-1])

        new_xs = np.linspace(0, 1, num_steps)
        new_ys = np.interp(new_xs, xs, ys)

        interped_ys = np.exp(new_ys)[::-1].copy()
        return interped_ys

    if shared.sd_model.is_sdxl:
        sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
    else:
        # Default to SD 1.5 sigmas.
        sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]

    if n != len(sigmas):
        sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
    else:
        sigmas.append(0.0)

    return torch.FloatTensor(sigmas).to(device)


def kl_optimal(n, sigma_min, sigma_max, device):
    alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
    alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
    step_indices = torch.arange(n + 1, device=device)
    sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
    return sigmas


def simple_scheduler(n, sigma_min, sigma_max, inner_model, device):
    sigs = []
    ss = len(inner_model.sigmas) / n
    for x in range(n):
        sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs).to(device)


def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
    start = inner_model.sigma_to_t(torch.tensor(sigma_max))
    end = inner_model.sigma_to_t(torch.tensor(sigma_min))

    if sgm:
        timesteps = torch.linspace(start, end, n + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, n)

    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
        sigs.append(inner_model.t_to_sigma(ts))
    sigs += [0.0]
    return torch.FloatTensor(sigs).to(device)


def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
    sigs = []
    ss = max(len(inner_model.sigmas) // n, 1)
    x = 1
    while x < len(inner_model.sigmas):
        sigs += [float(inner_model.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
    sigs += [0.0]
    return torch.FloatTensor(sigs).to(device)


def beta_scheduler(n, sigma_min, sigma_max, inner_model, device):
    # From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) """
    alpha = shared.opts.beta_dist_alpha
    beta = shared.opts.beta_dist_beta
    timesteps = 1 - np.linspace(0, 1, n)
    timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps]
    sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps]
    sigmas += [0.0]
    return torch.FloatTensor(sigmas).to(device)


def turbo_scheduler(n, sigma_min, sigma_max, inner_model, device):
    unet = inner_model.inner_model.forge_objects.unet
    timesteps = torch.flip(torch.arange(1, n + 1) * float(1000.0 / n) - 1, (0,)).round().long().clip(0, 999)
    sigmas = unet.model.predictor.sigma(timesteps)
    sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
    return sigmas.to(device)

def get_align_your_steps_sigmas_GITS(n, sigma_min, sigma_max, device):
    def loglinear_interp(t_steps, num_steps):
        """
        Performs log-linear interpolation of a given array of decreasing numbers.
        """
        xs = np.linspace(0, 1, len(t_steps))
        ys = np.log(t_steps[::-1])

        new_xs = np.linspace(0, 1, num_steps)
        new_ys = np.interp(new_xs, xs, ys)

        interped_ys = np.exp(new_ys)[::-1].copy()
        return interped_ys

    if shared.sd_model.is_sdxl:
        sigmas = [14.615, 4.734, 2.567, 1.529, 0.987, 0.652, 0.418, 0.268, 0.179, 0.127, 0.029]
    else:
        sigmas = [14.615, 4.617, 2.507, 1.236, 0.702, 0.402, 0.240, 0.156, 0.104, 0.094, 0.029]

    if n != len(sigmas):
        sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
    else:
        sigmas.append(0.0)

    return torch.FloatTensor(sigmas).to(device)

def ays_11_sigmas(n, sigma_min, sigma_max, device='cpu'):
    def loglinear_interp(t_steps, num_steps):
        """
        Performs log-linear interpolation of a given array of decreasing numbers.
        """
        xs = np.linspace(0, 1, len(t_steps))
        ys = np.log(t_steps[::-1])

        new_xs = np.linspace(0, 1, num_steps)
        new_ys = np.interp(new_xs, xs, ys)

        interped_ys = np.exp(new_ys)[::-1].copy()
        return interped_ys

    if shared.sd_model.is_sdxl:
        sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
    else:
        sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]

    if n != len(sigmas):
        sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
    else:
        sigmas.append(0.0)

    return torch.FloatTensor(sigmas).to(device)

def ays_32_sigmas(n, sigma_min, sigma_max, device='cpu'):
    def loglinear_interp(t_steps, num_steps):
        """
        Performs log-linear interpolation of a given array of decreasing numbers.
        """
        xs = np.linspace(0, 1, len(t_steps))
        ys = np.log(t_steps[::-1])
        new_xs = np.linspace(0, 1, num_steps)
        new_ys = np.interp(new_xs, xs, ys)
        interped_ys = np.exp(new_ys)[::-1].copy()
        return interped_ys
    if shared.sd_model.is_sdxl:
        sigmas = [14.61500000000000000, 11.14916180000000000, 8.505221270000000000, 6.488271510000000000, 5.437074020000000000, 4.603986190000000000, 3.898547040000000000, 3.274074570000000000, 2.743965270000000000, 2.299686590000000000, 1.954485140000000000, 1.671087150000000000, 1.428781520000000000, 1.231810090000000000, 1.067896490000000000, 0.925794430000000000, 0.802908860000000000, 0.696601210000000000, 0.604369030000000000, 0.528525520000000000, 0.467733440000000000, 0.413933790000000000, 0.362581860000000000, 0.310085170000000000, 0.265189250000000000, 0.223264610000000000, 0.176538770000000000, 0.139591920000000000, 0.105873810000000000, 0.055193690000000000, 0.028773340000000000, 0.015000000000000000]
    else:
        sigmas = [14.61500000000000000, 11.23951352000000000, 8.643630810000000000, 6.647294240000000000, 5.572508620000000000, 4.716485460000000000, 3.991960650000000000, 3.519560900000000000, 3.134904660000000000, 2.792287880000000000, 2.487736280000000000, 2.216638650000000000, 1.975083510000000000, 1.779317200000000000, 1.614753350000000000, 1.465409530000000000, 1.314849000000000000, 1.166424970000000000, 1.034755470000000000, 0.915737440000000000, 0.807481690000000000, 0.712023610000000000, 0.621739000000000000, 0.530652020000000000, 0.452909600000000000, 0.374914550000000000, 0.274618190000000000, 0.201152900000000000, 0.141058730000000000, 0.066828810000000000, 0.031661210000000000, 0.015000000000000000]
    if n != len(sigmas):
        sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
    else:
        sigmas.append(0.0)
    return torch.FloatTensor(sigmas).to(device)


schedulers = [
    Scheduler('automatic', 'Automatic', None),
    Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
    Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
    Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
    Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
    Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
    Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
    Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
    Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True),
    Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
    Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
    Scheduler('beta', 'Beta', beta_scheduler, need_inner_model=True),
    Scheduler('turbo', 'Turbo', turbo_scheduler, need_inner_model=True),
    Scheduler('align_your_steps_GITS', 'Align Your Steps GITS', get_align_your_steps_sigmas_GITS),
    Scheduler('align_your_steps_11', 'Align Your Steps 11', ays_11_sigmas),
    Scheduler('align_your_steps_32', 'Align Your Steps 32', ays_32_sigmas),
]

schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}