Spaces:
Runtime error
Runtime error
# import math | |
# from collections import namedtuple | |
# | |
# import torch | |
# | |
# from modules import prompt_parser, devices, sd_hijack, sd_emphasis | |
# from modules.shared import opts | |
# | |
# | |
# class PromptChunk: | |
# """ | |
# This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. | |
# If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. | |
# Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, | |
# so just 75 tokens from prompt. | |
# """ | |
# | |
# def __init__(self): | |
# self.tokens = [] | |
# self.multipliers = [] | |
# self.fixes = [] | |
# | |
# | |
# PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) | |
# """An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt | |
# chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally | |
# are applied by sd_hijack.EmbeddingsWithFixes's forward function.""" | |
# | |
# | |
# class TextConditionalModel(torch.nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# | |
# self.hijack = sd_hijack.model_hijack | |
# self.chunk_length = 75 | |
# | |
# self.is_trainable = False | |
# self.input_key = 'txt' | |
# self.return_pooled = False | |
# | |
# self.comma_token = None | |
# self.id_start = None | |
# self.id_end = None | |
# self.id_pad = None | |
# | |
# def empty_chunk(self): | |
# """creates an empty PromptChunk and returns it""" | |
# | |
# chunk = PromptChunk() | |
# chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) | |
# chunk.multipliers = [1.0] * (self.chunk_length + 2) | |
# return chunk | |
# | |
# def get_target_prompt_token_count(self, token_count): | |
# """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" | |
# | |
# return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length | |
# | |
# def tokenize(self, texts): | |
# """Converts a batch of texts into a batch of token ids""" | |
# | |
# raise NotImplementedError | |
# | |
# def encode_with_transformers(self, tokens): | |
# """ | |
# converts a batch of token ids (in python lists) into a single tensor with numeric representation of those tokens; | |
# All python lists with tokens are assumed to have same length, usually 77. | |
# if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on | |
# model - can be 768 and 1024. | |
# Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None). | |
# """ | |
# | |
# raise NotImplementedError | |
# | |
# def encode_embedding_init_text(self, init_text, nvpt): | |
# """Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through | |
# transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned.""" | |
# | |
# raise NotImplementedError | |
# | |
# def tokenize_line(self, line): | |
# """ | |
# this transforms a single prompt into a list of PromptChunk objects - as many as needed to | |
# represent the prompt. | |
# Returns the list and the total number of tokens in the prompt. | |
# """ | |
# | |
# if opts.emphasis != "None": | |
# parsed = prompt_parser.parse_prompt_attention(line) | |
# else: | |
# parsed = [[line, 1.0]] | |
# | |
# tokenized = self.tokenize([text for text, _ in parsed]) | |
# | |
# chunks = [] | |
# chunk = PromptChunk() | |
# token_count = 0 | |
# last_comma = -1 | |
# | |
# def next_chunk(is_last=False): | |
# """puts current chunk into the list of results and produces the next one - empty; | |
# if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count""" | |
# nonlocal token_count | |
# nonlocal last_comma | |
# nonlocal chunk | |
# | |
# if is_last: | |
# token_count += len(chunk.tokens) | |
# else: | |
# token_count += self.chunk_length | |
# | |
# to_add = self.chunk_length - len(chunk.tokens) | |
# if to_add > 0: | |
# chunk.tokens += [self.id_end] * to_add | |
# chunk.multipliers += [1.0] * to_add | |
# | |
# chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] | |
# chunk.multipliers = [1.0] + chunk.multipliers + [1.0] | |
# | |
# last_comma = -1 | |
# chunks.append(chunk) | |
# chunk = PromptChunk() | |
# | |
# for tokens, (text, weight) in zip(tokenized, parsed): | |
# if text == 'BREAK' and weight == -1: | |
# next_chunk() | |
# continue | |
# | |
# position = 0 | |
# while position < len(tokens): | |
# token = tokens[position] | |
# | |
# if token == self.comma_token: | |
# last_comma = len(chunk.tokens) | |
# | |
# # this is when we are at the end of allotted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack | |
# # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next. | |
# elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack: | |
# break_location = last_comma + 1 | |
# | |
# reloc_tokens = chunk.tokens[break_location:] | |
# reloc_mults = chunk.multipliers[break_location:] | |
# | |
# chunk.tokens = chunk.tokens[:break_location] | |
# chunk.multipliers = chunk.multipliers[:break_location] | |
# | |
# next_chunk() | |
# chunk.tokens = reloc_tokens | |
# chunk.multipliers = reloc_mults | |
# | |
# if len(chunk.tokens) == self.chunk_length: | |
# next_chunk() | |
# | |
# embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position) | |
# if embedding is None: | |
# chunk.tokens.append(token) | |
# chunk.multipliers.append(weight) | |
# position += 1 | |
# continue | |
# | |
# emb_len = int(embedding.vectors) | |
# if len(chunk.tokens) + emb_len > self.chunk_length: | |
# next_chunk() | |
# | |
# chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) | |
# | |
# chunk.tokens += [0] * emb_len | |
# chunk.multipliers += [weight] * emb_len | |
# position += embedding_length_in_tokens | |
# | |
# if chunk.tokens or not chunks: | |
# next_chunk(is_last=True) | |
# | |
# return chunks, token_count | |
# | |
# def process_texts(self, texts): | |
# """ | |
# Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum | |
# length, in tokens, of all texts. | |
# """ | |
# | |
# token_count = 0 | |
# | |
# cache = {} | |
# batch_chunks = [] | |
# for line in texts: | |
# if line in cache: | |
# chunks = cache[line] | |
# else: | |
# chunks, current_token_count = self.tokenize_line(line) | |
# token_count = max(current_token_count, token_count) | |
# | |
# cache[line] = chunks | |
# | |
# batch_chunks.append(chunks) | |
# | |
# return batch_chunks, token_count | |
# | |
# def forward(self, texts): | |
# """ | |
# Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. | |
# Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will | |
# be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280. | |
# An example shape returned by this function can be: (2, 77, 768). | |
# For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values. | |
# Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element | |
# is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" | |
# """ | |
# | |
# batch_chunks, token_count = self.process_texts(texts) | |
# | |
# used_embeddings = {} | |
# chunk_count = max([len(x) for x in batch_chunks]) | |
# | |
# zs = [] | |
# for i in range(chunk_count): | |
# batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] | |
# | |
# tokens = [x.tokens for x in batch_chunk] | |
# multipliers = [x.multipliers for x in batch_chunk] | |
# self.hijack.fixes = [x.fixes for x in batch_chunk] | |
# | |
# for fixes in self.hijack.fixes: | |
# for _position, embedding in fixes: | |
# used_embeddings[embedding.name] = embedding | |
# devices.torch_npu_set_device() | |
# z = self.process_tokens(tokens, multipliers) | |
# zs.append(z) | |
# | |
# if opts.textual_inversion_add_hashes_to_infotext and used_embeddings: | |
# hashes = [] | |
# for name, embedding in used_embeddings.items(): | |
# shorthash = embedding.shorthash | |
# if not shorthash: | |
# continue | |
# | |
# name = name.replace(":", "").replace(",", "") | |
# hashes.append(f"{name}: {shorthash}") | |
# | |
# if hashes: | |
# if self.hijack.extra_generation_params.get("TI hashes"): | |
# hashes.append(self.hijack.extra_generation_params.get("TI hashes")) | |
# self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes) | |
# | |
# if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original": | |
# self.hijack.extra_generation_params["Emphasis"] = opts.emphasis | |
# | |
# if self.return_pooled: | |
# return torch.hstack(zs), zs[0].pooled | |
# else: | |
# return torch.hstack(zs) | |
# | |
# def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
# """ | |
# sends one single prompt chunk to be encoded by transformers neural network. | |
# remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually | |
# there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. | |
# Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier | |
# corresponds to one token. | |
# """ | |
# tokens = torch.asarray(remade_batch_tokens).to(devices.device) | |
# | |
# # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones. | |
# if self.id_end != self.id_pad: | |
# for batch_pos in range(len(remade_batch_tokens)): | |
# index = remade_batch_tokens[batch_pos].index(self.id_end) | |
# tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad | |
# | |
# z = self.encode_with_transformers(tokens) | |
# | |
# pooled = getattr(z, 'pooled', None) | |
# | |
# emphasis = sd_emphasis.get_current_option(opts.emphasis)() | |
# emphasis.tokens = remade_batch_tokens | |
# emphasis.multipliers = torch.asarray(batch_multipliers).to(devices.device) | |
# emphasis.z = z | |
# | |
# emphasis.after_transformers() | |
# | |
# z = emphasis.z | |
# | |
# if pooled is not None: | |
# z.pooled = pooled | |
# | |
# return z | |
# | |
# | |
# class FrozenCLIPEmbedderWithCustomWordsBase(TextConditionalModel): | |
# """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to | |
# have unlimited prompt length and assign weights to tokens in prompt. | |
# """ | |
# | |
# def __init__(self, wrapped, hijack): | |
# super().__init__() | |
# | |
# self.hijack = hijack | |
# | |
# self.wrapped = wrapped | |
# """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, | |
# depending on model.""" | |
# | |
# self.is_trainable = getattr(wrapped, 'is_trainable', False) | |
# self.input_key = getattr(wrapped, 'input_key', 'txt') | |
# self.return_pooled = getattr(self.wrapped, 'return_pooled', False) | |
# | |
# self.legacy_ucg_val = None # for sgm codebase | |
# | |
# def forward(self, texts): | |
# if opts.use_old_emphasis_implementation: | |
# import modules.sd_hijack_clip_old | |
# return modules.sd_hijack_clip_old.forward_old(self, texts) | |
# | |
# return super().forward(texts) | |
# | |
# | |
# class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): | |
# def __init__(self, wrapped, hijack): | |
# super().__init__(wrapped, hijack) | |
# self.tokenizer = wrapped.tokenizer | |
# | |
# vocab = self.tokenizer.get_vocab() | |
# | |
# self.comma_token = vocab.get(',</w>', None) | |
# | |
# self.token_mults = {} | |
# tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] | |
# for text, ident in tokens_with_parens: | |
# mult = 1.0 | |
# for c in text: | |
# if c == '[': | |
# mult /= 1.1 | |
# if c == ']': | |
# mult *= 1.1 | |
# if c == '(': | |
# mult *= 1.1 | |
# if c == ')': | |
# mult /= 1.1 | |
# | |
# if mult != 1.0: | |
# self.token_mults[ident] = mult | |
# | |
# self.id_start = self.wrapped.tokenizer.bos_token_id | |
# self.id_end = self.wrapped.tokenizer.eos_token_id | |
# self.id_pad = self.id_end | |
# | |
# def tokenize(self, texts): | |
# tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] | |
# | |
# return tokenized | |
# | |
# def encode_with_transformers(self, tokens): | |
# outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) | |
# | |
# if opts.CLIP_stop_at_last_layers > 1: | |
# z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] | |
# z = self.wrapped.transformer.text_model.final_layer_norm(z) | |
# else: | |
# z = outputs.last_hidden_state | |
# | |
# return z | |
# | |
# def encode_embedding_init_text(self, init_text, nvpt): | |
# embedding_layer = self.wrapped.transformer.text_model.embeddings | |
# ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] | |
# embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) | |
# | |
# return embedded | |
# | |
# | |
# class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords): | |
# def __init__(self, wrapped, hijack): | |
# super().__init__(wrapped, hijack) | |
# | |
# def encode_with_transformers(self, tokens): | |
# outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden") | |
# | |
# if opts.sdxl_clip_l_skip is True: | |
# z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] | |
# elif self.wrapped.layer == "last": | |
# z = outputs.last_hidden_state | |
# else: | |
# z = outputs.hidden_states[self.wrapped.layer_idx] | |
# | |
# return z | |