NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
# import math
# from collections import namedtuple
#
# import torch
#
# from modules import prompt_parser, devices, sd_hijack, sd_emphasis
# from modules.shared import opts
#
#
# class PromptChunk:
# """
# This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
# If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
# Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
# so just 75 tokens from prompt.
# """
#
# def __init__(self):
# self.tokens = []
# self.multipliers = []
# self.fixes = []
#
#
# PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
# """An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
# chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
# are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
#
#
# class TextConditionalModel(torch.nn.Module):
# def __init__(self):
# super().__init__()
#
# self.hijack = sd_hijack.model_hijack
# self.chunk_length = 75
#
# self.is_trainable = False
# self.input_key = 'txt'
# self.return_pooled = False
#
# self.comma_token = None
# self.id_start = None
# self.id_end = None
# self.id_pad = None
#
# def empty_chunk(self):
# """creates an empty PromptChunk and returns it"""
#
# chunk = PromptChunk()
# chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
# chunk.multipliers = [1.0] * (self.chunk_length + 2)
# return chunk
#
# def get_target_prompt_token_count(self, token_count):
# """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
#
# return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
#
# def tokenize(self, texts):
# """Converts a batch of texts into a batch of token ids"""
#
# raise NotImplementedError
#
# def encode_with_transformers(self, tokens):
# """
# converts a batch of token ids (in python lists) into a single tensor with numeric representation of those tokens;
# All python lists with tokens are assumed to have same length, usually 77.
# if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
# model - can be 768 and 1024.
# Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None).
# """
#
# raise NotImplementedError
#
# def encode_embedding_init_text(self, init_text, nvpt):
# """Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through
# transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned."""
#
# raise NotImplementedError
#
# def tokenize_line(self, line):
# """
# this transforms a single prompt into a list of PromptChunk objects - as many as needed to
# represent the prompt.
# Returns the list and the total number of tokens in the prompt.
# """
#
# if opts.emphasis != "None":
# parsed = prompt_parser.parse_prompt_attention(line)
# else:
# parsed = [[line, 1.0]]
#
# tokenized = self.tokenize([text for text, _ in parsed])
#
# chunks = []
# chunk = PromptChunk()
# token_count = 0
# last_comma = -1
#
# def next_chunk(is_last=False):
# """puts current chunk into the list of results and produces the next one - empty;
# if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
# nonlocal token_count
# nonlocal last_comma
# nonlocal chunk
#
# if is_last:
# token_count += len(chunk.tokens)
# else:
# token_count += self.chunk_length
#
# to_add = self.chunk_length - len(chunk.tokens)
# if to_add > 0:
# chunk.tokens += [self.id_end] * to_add
# chunk.multipliers += [1.0] * to_add
#
# chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
# chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
#
# last_comma = -1
# chunks.append(chunk)
# chunk = PromptChunk()
#
# for tokens, (text, weight) in zip(tokenized, parsed):
# if text == 'BREAK' and weight == -1:
# next_chunk()
# continue
#
# position = 0
# while position < len(tokens):
# token = tokens[position]
#
# if token == self.comma_token:
# last_comma = len(chunk.tokens)
#
# # this is when we are at the end of allotted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
# # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
# elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack:
# break_location = last_comma + 1
#
# reloc_tokens = chunk.tokens[break_location:]
# reloc_mults = chunk.multipliers[break_location:]
#
# chunk.tokens = chunk.tokens[:break_location]
# chunk.multipliers = chunk.multipliers[:break_location]
#
# next_chunk()
# chunk.tokens = reloc_tokens
# chunk.multipliers = reloc_mults
#
# if len(chunk.tokens) == self.chunk_length:
# next_chunk()
#
# embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position)
# if embedding is None:
# chunk.tokens.append(token)
# chunk.multipliers.append(weight)
# position += 1
# continue
#
# emb_len = int(embedding.vectors)
# if len(chunk.tokens) + emb_len > self.chunk_length:
# next_chunk()
#
# chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
#
# chunk.tokens += [0] * emb_len
# chunk.multipliers += [weight] * emb_len
# position += embedding_length_in_tokens
#
# if chunk.tokens or not chunks:
# next_chunk(is_last=True)
#
# return chunks, token_count
#
# def process_texts(self, texts):
# """
# Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
# length, in tokens, of all texts.
# """
#
# token_count = 0
#
# cache = {}
# batch_chunks = []
# for line in texts:
# if line in cache:
# chunks = cache[line]
# else:
# chunks, current_token_count = self.tokenize_line(line)
# token_count = max(current_token_count, token_count)
#
# cache[line] = chunks
#
# batch_chunks.append(chunks)
#
# return batch_chunks, token_count
#
# def forward(self, texts):
# """
# Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
# Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
# be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
# An example shape returned by this function can be: (2, 77, 768).
# For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
# Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element
# is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
# """
#
# batch_chunks, token_count = self.process_texts(texts)
#
# used_embeddings = {}
# chunk_count = max([len(x) for x in batch_chunks])
#
# zs = []
# for i in range(chunk_count):
# batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
#
# tokens = [x.tokens for x in batch_chunk]
# multipliers = [x.multipliers for x in batch_chunk]
# self.hijack.fixes = [x.fixes for x in batch_chunk]
#
# for fixes in self.hijack.fixes:
# for _position, embedding in fixes:
# used_embeddings[embedding.name] = embedding
# devices.torch_npu_set_device()
# z = self.process_tokens(tokens, multipliers)
# zs.append(z)
#
# if opts.textual_inversion_add_hashes_to_infotext and used_embeddings:
# hashes = []
# for name, embedding in used_embeddings.items():
# shorthash = embedding.shorthash
# if not shorthash:
# continue
#
# name = name.replace(":", "").replace(",", "")
# hashes.append(f"{name}: {shorthash}")
#
# if hashes:
# if self.hijack.extra_generation_params.get("TI hashes"):
# hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
# self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
#
# if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original":
# self.hijack.extra_generation_params["Emphasis"] = opts.emphasis
#
# if self.return_pooled:
# return torch.hstack(zs), zs[0].pooled
# else:
# return torch.hstack(zs)
#
# def process_tokens(self, remade_batch_tokens, batch_multipliers):
# """
# sends one single prompt chunk to be encoded by transformers neural network.
# remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
# there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
# Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
# corresponds to one token.
# """
# tokens = torch.asarray(remade_batch_tokens).to(devices.device)
#
# # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
# if self.id_end != self.id_pad:
# for batch_pos in range(len(remade_batch_tokens)):
# index = remade_batch_tokens[batch_pos].index(self.id_end)
# tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
#
# z = self.encode_with_transformers(tokens)
#
# pooled = getattr(z, 'pooled', None)
#
# emphasis = sd_emphasis.get_current_option(opts.emphasis)()
# emphasis.tokens = remade_batch_tokens
# emphasis.multipliers = torch.asarray(batch_multipliers).to(devices.device)
# emphasis.z = z
#
# emphasis.after_transformers()
#
# z = emphasis.z
#
# if pooled is not None:
# z.pooled = pooled
#
# return z
#
#
# class FrozenCLIPEmbedderWithCustomWordsBase(TextConditionalModel):
# """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
# have unlimited prompt length and assign weights to tokens in prompt.
# """
#
# def __init__(self, wrapped, hijack):
# super().__init__()
#
# self.hijack = hijack
#
# self.wrapped = wrapped
# """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
# depending on model."""
#
# self.is_trainable = getattr(wrapped, 'is_trainable', False)
# self.input_key = getattr(wrapped, 'input_key', 'txt')
# self.return_pooled = getattr(self.wrapped, 'return_pooled', False)
#
# self.legacy_ucg_val = None # for sgm codebase
#
# def forward(self, texts):
# if opts.use_old_emphasis_implementation:
# import modules.sd_hijack_clip_old
# return modules.sd_hijack_clip_old.forward_old(self, texts)
#
# return super().forward(texts)
#
#
# class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
# self.tokenizer = wrapped.tokenizer
#
# vocab = self.tokenizer.get_vocab()
#
# self.comma_token = vocab.get(',</w>', None)
#
# self.token_mults = {}
# tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
# for text, ident in tokens_with_parens:
# mult = 1.0
# for c in text:
# if c == '[':
# mult /= 1.1
# if c == ']':
# mult *= 1.1
# if c == '(':
# mult *= 1.1
# if c == ')':
# mult /= 1.1
#
# if mult != 1.0:
# self.token_mults[ident] = mult
#
# self.id_start = self.wrapped.tokenizer.bos_token_id
# self.id_end = self.wrapped.tokenizer.eos_token_id
# self.id_pad = self.id_end
#
# def tokenize(self, texts):
# tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
#
# return tokenized
#
# def encode_with_transformers(self, tokens):
# outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
#
# if opts.CLIP_stop_at_last_layers > 1:
# z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
# z = self.wrapped.transformer.text_model.final_layer_norm(z)
# else:
# z = outputs.last_hidden_state
#
# return z
#
# def encode_embedding_init_text(self, init_text, nvpt):
# embedding_layer = self.wrapped.transformer.text_model.embeddings
# ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
# embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
#
# return embedded
#
#
# class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
#
# def encode_with_transformers(self, tokens):
# outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
#
# if opts.sdxl_clip_l_skip is True:
# z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
# elif self.wrapped.layer == "last":
# z = outputs.last_hidden_state
# else:
# z = outputs.hidden_states[self.wrapped.layer_idx]
#
# return z