# import math # from collections import namedtuple # # import torch # # from modules import prompt_parser, devices, sd_hijack, sd_emphasis # from modules.shared import opts # # # class PromptChunk: # """ # This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt. # If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary. # Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token, # so just 75 tokens from prompt. # """ # # def __init__(self): # self.tokens = [] # self.multipliers = [] # self.fixes = [] # # # PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) # """An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt # chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally # are applied by sd_hijack.EmbeddingsWithFixes's forward function.""" # # # class TextConditionalModel(torch.nn.Module): # def __init__(self): # super().__init__() # # self.hijack = sd_hijack.model_hijack # self.chunk_length = 75 # # self.is_trainable = False # self.input_key = 'txt' # self.return_pooled = False # # self.comma_token = None # self.id_start = None # self.id_end = None # self.id_pad = None # # def empty_chunk(self): # """creates an empty PromptChunk and returns it""" # # chunk = PromptChunk() # chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) # chunk.multipliers = [1.0] * (self.chunk_length + 2) # return chunk # # def get_target_prompt_token_count(self, token_count): # """returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented""" # # return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length # # def tokenize(self, texts): # """Converts a batch of texts into a batch of token ids""" # # raise NotImplementedError # # def encode_with_transformers(self, tokens): # """ # converts a batch of token ids (in python lists) into a single tensor with numeric representation of those tokens; # All python lists with tokens are assumed to have same length, usually 77. # if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on # model - can be 768 and 1024. # Among other things, this call will read self.hijack.fixes, apply it to its inputs, and clear it (setting it to None). # """ # # raise NotImplementedError # # def encode_embedding_init_text(self, init_text, nvpt): # """Converts text into a tensor with this text's tokens' embeddings. Note that those are embeddings before they are passed through # transformers. nvpt is used as a maximum length in tokens. If text produces less teokens than nvpt, only this many is returned.""" # # raise NotImplementedError # # def tokenize_line(self, line): # """ # this transforms a single prompt into a list of PromptChunk objects - as many as needed to # represent the prompt. # Returns the list and the total number of tokens in the prompt. # """ # # if opts.emphasis != "None": # parsed = prompt_parser.parse_prompt_attention(line) # else: # parsed = [[line, 1.0]] # # tokenized = self.tokenize([text for text, _ in parsed]) # # chunks = [] # chunk = PromptChunk() # token_count = 0 # last_comma = -1 # # def next_chunk(is_last=False): # """puts current chunk into the list of results and produces the next one - empty; # if is_last is true, tokens tokens at the end won't add to token_count""" # nonlocal token_count # nonlocal last_comma # nonlocal chunk # # if is_last: # token_count += len(chunk.tokens) # else: # token_count += self.chunk_length # # to_add = self.chunk_length - len(chunk.tokens) # if to_add > 0: # chunk.tokens += [self.id_end] * to_add # chunk.multipliers += [1.0] * to_add # # chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] # chunk.multipliers = [1.0] + chunk.multipliers + [1.0] # # last_comma = -1 # chunks.append(chunk) # chunk = PromptChunk() # # for tokens, (text, weight) in zip(tokenized, parsed): # if text == 'BREAK' and weight == -1: # next_chunk() # continue # # position = 0 # while position < len(tokens): # token = tokens[position] # # if token == self.comma_token: # last_comma = len(chunk.tokens) # # # this is when we are at the end of allotted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack # # is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next. # elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack: # break_location = last_comma + 1 # # reloc_tokens = chunk.tokens[break_location:] # reloc_mults = chunk.multipliers[break_location:] # # chunk.tokens = chunk.tokens[:break_location] # chunk.multipliers = chunk.multipliers[:break_location] # # next_chunk() # chunk.tokens = reloc_tokens # chunk.multipliers = reloc_mults # # if len(chunk.tokens) == self.chunk_length: # next_chunk() # # embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, position) # if embedding is None: # chunk.tokens.append(token) # chunk.multipliers.append(weight) # position += 1 # continue # # emb_len = int(embedding.vectors) # if len(chunk.tokens) + emb_len > self.chunk_length: # next_chunk() # # chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) # # chunk.tokens += [0] * emb_len # chunk.multipliers += [weight] * emb_len # position += embedding_length_in_tokens # # if chunk.tokens or not chunks: # next_chunk(is_last=True) # # return chunks, token_count # # def process_texts(self, texts): # """ # Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum # length, in tokens, of all texts. # """ # # token_count = 0 # # cache = {} # batch_chunks = [] # for line in texts: # if line in cache: # chunks = cache[line] # else: # chunks, current_token_count = self.tokenize_line(line) # token_count = max(current_token_count, token_count) # # cache[line] = chunks # # batch_chunks.append(chunks) # # return batch_chunks, token_count # # def forward(self, texts): # """ # Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. # Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will # be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280. # An example shape returned by this function can be: (2, 77, 768). # For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values. # Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element # is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" # """ # # batch_chunks, token_count = self.process_texts(texts) # # used_embeddings = {} # chunk_count = max([len(x) for x in batch_chunks]) # # zs = [] # for i in range(chunk_count): # batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] # # tokens = [x.tokens for x in batch_chunk] # multipliers = [x.multipliers for x in batch_chunk] # self.hijack.fixes = [x.fixes for x in batch_chunk] # # for fixes in self.hijack.fixes: # for _position, embedding in fixes: # used_embeddings[embedding.name] = embedding # devices.torch_npu_set_device() # z = self.process_tokens(tokens, multipliers) # zs.append(z) # # if opts.textual_inversion_add_hashes_to_infotext and used_embeddings: # hashes = [] # for name, embedding in used_embeddings.items(): # shorthash = embedding.shorthash # if not shorthash: # continue # # name = name.replace(":", "").replace(",", "") # hashes.append(f"{name}: {shorthash}") # # if hashes: # if self.hijack.extra_generation_params.get("TI hashes"): # hashes.append(self.hijack.extra_generation_params.get("TI hashes")) # self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes) # # if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original": # self.hijack.extra_generation_params["Emphasis"] = opts.emphasis # # if self.return_pooled: # return torch.hstack(zs), zs[0].pooled # else: # return torch.hstack(zs) # # def process_tokens(self, remade_batch_tokens, batch_multipliers): # """ # sends one single prompt chunk to be encoded by transformers neural network. # remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually # there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens. # Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier # corresponds to one token. # """ # tokens = torch.asarray(remade_batch_tokens).to(devices.device) # # # this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones. # if self.id_end != self.id_pad: # for batch_pos in range(len(remade_batch_tokens)): # index = remade_batch_tokens[batch_pos].index(self.id_end) # tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad # # z = self.encode_with_transformers(tokens) # # pooled = getattr(z, 'pooled', None) # # emphasis = sd_emphasis.get_current_option(opts.emphasis)() # emphasis.tokens = remade_batch_tokens # emphasis.multipliers = torch.asarray(batch_multipliers).to(devices.device) # emphasis.z = z # # emphasis.after_transformers() # # z = emphasis.z # # if pooled is not None: # z.pooled = pooled # # return z # # # class FrozenCLIPEmbedderWithCustomWordsBase(TextConditionalModel): # """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to # have unlimited prompt length and assign weights to tokens in prompt. # """ # # def __init__(self, wrapped, hijack): # super().__init__() # # self.hijack = hijack # # self.wrapped = wrapped # """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation, # depending on model.""" # # self.is_trainable = getattr(wrapped, 'is_trainable', False) # self.input_key = getattr(wrapped, 'input_key', 'txt') # self.return_pooled = getattr(self.wrapped, 'return_pooled', False) # # self.legacy_ucg_val = None # for sgm codebase # # def forward(self, texts): # if opts.use_old_emphasis_implementation: # import modules.sd_hijack_clip_old # return modules.sd_hijack_clip_old.forward_old(self, texts) # # return super().forward(texts) # # # class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): # def __init__(self, wrapped, hijack): # super().__init__(wrapped, hijack) # self.tokenizer = wrapped.tokenizer # # vocab = self.tokenizer.get_vocab() # # self.comma_token = vocab.get(',', None) # # self.token_mults = {} # tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] # for text, ident in tokens_with_parens: # mult = 1.0 # for c in text: # if c == '[': # mult /= 1.1 # if c == ']': # mult *= 1.1 # if c == '(': # mult *= 1.1 # if c == ')': # mult /= 1.1 # # if mult != 1.0: # self.token_mults[ident] = mult # # self.id_start = self.wrapped.tokenizer.bos_token_id # self.id_end = self.wrapped.tokenizer.eos_token_id # self.id_pad = self.id_end # # def tokenize(self, texts): # tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] # # return tokenized # # def encode_with_transformers(self, tokens): # outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) # # if opts.CLIP_stop_at_last_layers > 1: # z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] # z = self.wrapped.transformer.text_model.final_layer_norm(z) # else: # z = outputs.last_hidden_state # # return z # # def encode_embedding_init_text(self, init_text, nvpt): # embedding_layer = self.wrapped.transformer.text_model.embeddings # ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] # embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) # # return embedded # # # class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords): # def __init__(self, wrapped, hijack): # super().__init__(wrapped, hijack) # # def encode_with_transformers(self, tokens): # outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden") # # if opts.sdxl_clip_l_skip is True: # z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] # elif self.wrapped.layer == "last": # z = outputs.last_hidden_state # else: # z = outputs.hidden_states[self.wrapped.layer_idx] # # return z