Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from loadimg import load_img | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import glob | |
import pathlib | |
from PIL import Image | |
with spaces.capture_gpu_object() as birefnet_gpu_obj: | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
spaces.automatically_move_to_gpu_when_forward(birefnet) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
image_size = im.size | |
origin = im.copy() | |
image = load_img(im) | |
input_images = transform_image(image).unsqueeze(0).to(spaces.gpu) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return (image, origin) | |
def batch_process(input_folder, output_folder, save_png, save_flat): | |
# Ensure output folder exists | |
os.makedirs(output_folder, exist_ok=True) | |
# Supported image extensions | |
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.webp'] | |
# Collect all image files from input folder | |
input_images = [] | |
for ext in image_extensions: | |
input_images.extend(glob.glob(os.path.join(input_folder, f'*{ext}'))) | |
# Process each image | |
processed_images = [] | |
for image_path in input_images: | |
try: | |
# Load image | |
im = load_img(image_path, output_type="pil") | |
im = im.convert("RGB") | |
image_size = im.size | |
image = load_img(im) | |
# Prepare image for processing | |
input_image = transform_image(image).unsqueeze(0).to(spaces.gpu) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_image)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
# Apply mask | |
image.putalpha(mask) | |
# Save processed image | |
output_filename = os.path.join(output_folder, f"{pathlib.Path(image_path).name}") | |
if save_flat: | |
background = Image.new('RGBA', image.size, (255, 255, 255)) | |
image = Image.alpha_composite(background, image) | |
image = image.convert("RGB") | |
elif output_filename.lower().endswith(".jpg") or output_filename.lower().endswith(".jpeg"): | |
# jpegs don't support alpha channel, so add .png extension (not change, to avoid potential overwrites) | |
output_filename += ".png" | |
if save_png and not output_filename.lower().endswith(".png"): | |
output_filename += ".png" | |
image.save(output_filename) | |
processed_images.append(output_filename) | |
except Exception as e: | |
print(f"Error processing {image_path}: {str(e)}") | |
return processed_images | |
slider1 = ImageSlider(label="birefnet", type="pil") | |
slider2 = ImageSlider(label="birefnet", type="pil") | |
image = gr.Image(label="Upload an image") | |
text = gr.Textbox(label="URL to image, or local path to image", max_lines=1) | |
chameleon = load_img(spaces.convert_root_path() + "chameleon.jpg", output_type="pil") | |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" | |
tab1 = gr.Interface( | |
fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image", allow_flagging="never" | |
) | |
tab2 = gr.Interface( | |
fn, inputs=text, outputs=slider2, examples=[url], api_name="text", allow_flagging="never" | |
) | |
tab3 = gr.Interface( | |
batch_process, | |
inputs=[ | |
gr.Textbox(label="Input folder path", max_lines=1), | |
gr.Textbox(label="Output folder path (will overwrite)", max_lines=1), | |
gr.Checkbox(label="Always save as PNG", value=True), | |
gr.Checkbox(label="Save flat (no mask)", value=False) | |
], | |
outputs=gr.File(label="Processed images", type="filepath", file_count="multiple"), | |
api_name="batch", | |
allow_flagging="never" | |
) | |
demo = gr.TabbedInterface( | |
[tab1, tab2, tab3], | |
["image", "URL", "batch"], | |
title="birefnet for background removal" | |
) | |
if __name__ == "__main__": | |
demo.launch(inbrowser=True) | |