NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
import spaces
import os
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import glob
import pathlib
from PIL import Image
with spaces.capture_gpu_object() as birefnet_gpu_obj:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
spaces.automatically_move_to_gpu_when_forward(birefnet)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU(gpu_objects=[birefnet_gpu_obj], manual_load=True)
def fn(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
image_size = im.size
origin = im.copy()
image = load_img(im)
input_images = transform_image(image).unsqueeze(0).to(spaces.gpu)
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return (image, origin)
@spaces.GPU(gpu_objects=[birefnet_gpu_obj], manual_load=True)
def batch_process(input_folder, output_folder, save_png, save_flat):
# Ensure output folder exists
os.makedirs(output_folder, exist_ok=True)
# Supported image extensions
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.webp']
# Collect all image files from input folder
input_images = []
for ext in image_extensions:
input_images.extend(glob.glob(os.path.join(input_folder, f'*{ext}')))
# Process each image
processed_images = []
for image_path in input_images:
try:
# Load image
im = load_img(image_path, output_type="pil")
im = im.convert("RGB")
image_size = im.size
image = load_img(im)
# Prepare image for processing
input_image = transform_image(image).unsqueeze(0).to(spaces.gpu)
# Prediction
with torch.no_grad():
preds = birefnet(input_image)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
# Apply mask
image.putalpha(mask)
# Save processed image
output_filename = os.path.join(output_folder, f"{pathlib.Path(image_path).name}")
if save_flat:
background = Image.new('RGBA', image.size, (255, 255, 255))
image = Image.alpha_composite(background, image)
image = image.convert("RGB")
elif output_filename.lower().endswith(".jpg") or output_filename.lower().endswith(".jpeg"):
# jpegs don't support alpha channel, so add .png extension (not change, to avoid potential overwrites)
output_filename += ".png"
if save_png and not output_filename.lower().endswith(".png"):
output_filename += ".png"
image.save(output_filename)
processed_images.append(output_filename)
except Exception as e:
print(f"Error processing {image_path}: {str(e)}")
return processed_images
slider1 = ImageSlider(label="birefnet", type="pil")
slider2 = ImageSlider(label="birefnet", type="pil")
image = gr.Image(label="Upload an image")
text = gr.Textbox(label="URL to image, or local path to image", max_lines=1)
chameleon = load_img(spaces.convert_root_path() + "chameleon.jpg", output_type="pil")
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
tab1 = gr.Interface(
fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image", allow_flagging="never"
)
tab2 = gr.Interface(
fn, inputs=text, outputs=slider2, examples=[url], api_name="text", allow_flagging="never"
)
tab3 = gr.Interface(
batch_process,
inputs=[
gr.Textbox(label="Input folder path", max_lines=1),
gr.Textbox(label="Output folder path (will overwrite)", max_lines=1),
gr.Checkbox(label="Always save as PNG", value=True),
gr.Checkbox(label="Save flat (no mask)", value=False)
],
outputs=gr.File(label="Processed images", type="filepath", file_count="multiple"),
api_name="batch",
allow_flagging="never"
)
demo = gr.TabbedInterface(
[tab1, tab2, tab3],
["image", "URL", "batch"],
title="birefnet for background removal"
)
if __name__ == "__main__":
demo.launch(inbrowser=True)