Spaces:
Build error
Build error
""" | |
Copyright (C) 2018 NVIDIA Corporation. All rights reserved. | |
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). | |
""" | |
from __future__ import division | |
import torch.nn as nn | |
import scipy.misc | |
import scipy._lib | |
import numpy as np | |
import scipy.sparse | |
import scipy.sparse.linalg as linalg | |
from numpy.lib.stride_tricks import as_strided | |
from PIL import Image | |
class Propagator(nn.Module): | |
def __init__(self, beta=0.9999): | |
super(Propagator, self).__init__() | |
self.beta = beta | |
def process(self, initImg, contentImg): | |
if type(contentImg) == str: | |
content = scipy.misc.imread(contentImg, mode='RGB') | |
else: | |
content = contentImg.copy() | |
# content = scipy.misc.imread(contentImg, mode='RGB') | |
if type(initImg) == str: | |
B = scipy.misc.imread(initImg, mode='RGB').astype(np.float64) / 255 | |
else: | |
B = scipy.asarray(initImg).astype(np.float64) / 255 | |
# B = self. | |
# B = scipy.misc.imread(initImg, mode='RGB').astype(np.float64)/255 | |
h1,w1,k = B.shape | |
h = h1 - 4 | |
w = w1 - 4 | |
B = B[int((h1-h)/2):int((h1-h)/2+h),int((w1-w)/2):int((w1-w)/2+w),:] | |
#content = scipy.misc.imresize(content,(h,w)) | |
content = np.asarray(Image.fromarray(np.array(content)).resize((h,w),Image.BICUBIC)) | |
B = self.__replication_padding(B,2) | |
content = self.__replication_padding(content,2) | |
content = content.astype(np.float64)/255 | |
B = np.reshape(B,(h1*w1,k)) | |
W = self.__compute_laplacian(content) | |
W = W.tocsc() | |
dd = W.sum(0) | |
dd = np.sqrt(np.power(dd,-1)) | |
dd = dd.A.squeeze() | |
D = scipy.sparse.csc_matrix((dd, (np.arange(0,w1*h1), np.arange(0,w1*h1)))) # 0.026 | |
S = D.dot(W).dot(D) | |
A = scipy.sparse.identity(w1*h1) - self.beta*S | |
A = A.tocsc() | |
solver = linalg.factorized(A) | |
V = np.zeros((h1*w1,k)) | |
V[:,0] = solver(B[:,0]) | |
V[:,1] = solver(B[:,1]) | |
V[:,2] = solver(B[:,2]) | |
V = V*(1-self.beta) | |
V = V.reshape(h1,w1,k) | |
V = V[2:2+h,2:2+w,:] | |
img = Image.fromarray(np.uint8(np.clip(V * 255., 0, 255.))) | |
return img | |
# Returns sparse matting laplacian | |
# The implementation of the function is heavily borrowed from | |
# https://github.com/MarcoForte/closed-form-matting/blob/master/closed_form_matting.py | |
# We thank Marco Forte for sharing his code. | |
def __compute_laplacian(self, img, eps=10**(-7), win_rad=1): | |
win_size = (win_rad*2+1)**2 | |
h, w, d = img.shape | |
c_h, c_w = h - 2*win_rad, w - 2*win_rad | |
win_diam = win_rad*2+1 | |
indsM = np.arange(h*w).reshape((h, w)) | |
ravelImg = img.reshape(h*w, d) | |
win_inds = self.__rolling_block(indsM, block=(win_diam, win_diam)) | |
win_inds = win_inds.reshape(c_h, c_w, win_size) | |
winI = ravelImg[win_inds] | |
win_mu = np.mean(winI, axis=2, keepdims=True) | |
win_var = np.einsum('...ji,...jk ->...ik', winI, winI)/win_size - np.einsum('...ji,...jk ->...ik', win_mu, win_mu) | |
inv = np.linalg.inv(win_var + (eps/win_size)*np.eye(3)) | |
X = np.einsum('...ij,...jk->...ik', winI - win_mu, inv) | |
vals = (1/win_size)*(1 + np.einsum('...ij,...kj->...ik', X, winI - win_mu)) | |
nz_indsCol = np.tile(win_inds, win_size).ravel() | |
nz_indsRow = np.repeat(win_inds, win_size).ravel() | |
nz_indsVal = vals.ravel() | |
L = scipy.sparse.coo_matrix((nz_indsVal, (nz_indsRow, nz_indsCol)), shape=(h*w, h*w)) | |
return L | |
def __replication_padding(self, arr,pad): | |
h,w,c = arr.shape | |
ans = np.zeros((h+pad*2,w+pad*2,c)) | |
for i in range(c): | |
ans[:,:,i] = np.pad(arr[:,:,i],pad_width=(pad,pad),mode='edge') | |
return ans | |
def __rolling_block(self, A, block=(3, 3)): | |
shape = (A.shape[0] - block[0] + 1, A.shape[1] - block[1] + 1) + block | |
strides = (A.strides[0], A.strides[1]) + A.strides | |
return as_strided(A, shape=shape, strides=strides) |