Niharmahesh commited on
Commit
04eb0d0
·
verified ·
1 Parent(s): 769e0dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -27
app.py CHANGED
@@ -8,6 +8,7 @@ from numpy.linalg import norm
8
  import matplotlib.pyplot as plt
9
  import os
10
  import base64
 
11
  st.set_page_config(layout="wide")
12
  # Function to load the Random Forest model
13
  @st.cache_resource
@@ -25,15 +26,6 @@ model = load_model()
25
  if model is None:
26
  st.stop()
27
 
28
- # Initialize MediaPipe Hands
29
- @st.cache_resource
30
- def load_mediapipe_model():
31
- mp_hands = mp.solutions.hands
32
- return mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5)
33
-
34
- hands = load_mediapipe_model()
35
- mp_drawing = mp.solutions.drawing_utils
36
-
37
  # Function to normalize landmarks
38
  def normalize_landmarks(landmarks):
39
  center = np.mean(landmarks, axis=0)
@@ -55,19 +47,21 @@ def calculate_angles(landmarks):
55
 
56
  # Function to process image and predict alphabet
57
  def process_and_predict(image):
58
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
59
- results = hands.process(image_rgb)
60
-
61
- if results.multi_hand_landmarks:
62
- landmarks = np.array([[lm.x, lm.y] for lm in results.multi_hand_landmarks[0].landmark])
63
- landmarks_normalized = normalize_landmarks(landmarks)
64
- angles = calculate_angles(landmarks_normalized)
65
-
66
- angle_columns = [f'angle_{i}' for i in range(len(angles))]
67
- angles_df = pd.DataFrame([angles], columns=angle_columns)
68
 
69
- probabilities = model.predict_proba(angles_df)[0]
70
- return probabilities, landmarks
 
 
 
 
 
 
 
 
71
 
72
  return None, None
73
 
@@ -75,7 +69,8 @@ def process_and_predict(image):
75
  def plot_hand_landmarks(landmarks, title):
76
  fig, ax = plt.subplots(figsize=(10, 10))
77
  ax.scatter(landmarks[:, 0], landmarks[:, 1], c='blue', s=50)
78
- for connection in mp.solutions.hands.HAND_CONNECTIONS:
 
79
  start_idx = connection[0]
80
  end_idx = connection[1]
81
  ax.plot([landmarks[start_idx, 0], landmarks[end_idx, 0]],
@@ -162,8 +157,4 @@ with tab2:
162
  except Exception as e:
163
  st.error(f"An error occurred while processing image for {alphabet}: {str(e)}")
164
  else:
165
- st.error(f"Image not found for {alphabet}")
166
-
167
- # Don't close hands here, as it might be None
168
- if hands is not None:
169
- hands.close()
 
8
  import matplotlib.pyplot as plt
9
  import os
10
  import base64
11
+
12
  st.set_page_config(layout="wide")
13
  # Function to load the Random Forest model
14
  @st.cache_resource
 
26
  if model is None:
27
  st.stop()
28
 
 
 
 
 
 
 
 
 
 
29
  # Function to normalize landmarks
30
  def normalize_landmarks(landmarks):
31
  center = np.mean(landmarks, axis=0)
 
47
 
48
  # Function to process image and predict alphabet
49
  def process_and_predict(image):
50
+ mp_hands = mp.solutions.hands
51
+ with mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5) as hands:
52
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
53
+ results = hands.process(image_rgb)
 
 
 
 
 
 
54
 
55
+ if results.multi_hand_landmarks:
56
+ landmarks = np.array([[lm.x, lm.y] for lm in results.multi_hand_landmarks[0].landmark])
57
+ landmarks_normalized = normalize_landmarks(landmarks)
58
+ angles = calculate_angles(landmarks_normalized)
59
+
60
+ angle_columns = [f'angle_{i}' for i in range(len(angles))]
61
+ angles_df = pd.DataFrame([angles], columns=angle_columns)
62
+
63
+ probabilities = model.predict_proba(angles_df)[0]
64
+ return probabilities, landmarks
65
 
66
  return None, None
67
 
 
69
  def plot_hand_landmarks(landmarks, title):
70
  fig, ax = plt.subplots(figsize=(10, 10))
71
  ax.scatter(landmarks[:, 0], landmarks[:, 1], c='blue', s=50)
72
+ mp_hands = mp.solutions.hands
73
+ for connection in mp_hands.HAND_CONNECTIONS:
74
  start_idx = connection[0]
75
  end_idx = connection[1]
76
  ax.plot([landmarks[start_idx, 0], landmarks[end_idx, 0]],
 
157
  except Exception as e:
158
  st.error(f"An error occurred while processing image for {alphabet}: {str(e)}")
159
  else:
160
+ st.error(f"Image not found for {alphabet}")