Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -189,15 +189,68 @@ def display_dashboard(df):
|
|
189 |
with col4:
|
190 |
fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f'])
|
191 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
def display_about_page():
|
193 |
st.markdown("""
|
194 |
## What is this application?
|
|
|
195 |
The Job Listings Dashboard is a powerful tool designed to provide insights into the job market. It offers a comprehensive view of job postings, allowing users to explore trends, top companies, locations, and job titles.
|
|
|
196 |
### Key Features:
|
197 |
- **Interactive Dashboard**: Visualize job market trends with dynamic charts and graphs.
|
198 |
- **Data Explorer**: Dive deep into individual job listings with advanced filtering options.
|
199 |
- **Real-time Data**: Fetch the latest job data from our Hugging Face dataset.
|
|
|
200 |
## How to use this application
|
|
|
201 |
### Dashboard
|
202 |
1. Navigate to the Dashboard using the sidebar.
|
203 |
2. View overall statistics such as total job postings, unique companies, and today's postings.
|
@@ -206,6 +259,7 @@ def display_about_page():
|
|
206 |
- Job postings over time
|
207 |
- Top locations for job opportunities
|
208 |
- Most common job titles
|
|
|
209 |
### Data Explorer
|
210 |
1. Switch to the Data Explorer using the sidebar.
|
211 |
2. Choose between viewing all data or applying filters.
|
@@ -215,10 +269,13 @@ def display_about_page():
|
|
215 |
- Job Types
|
216 |
4. Browse the filtered job listings table.
|
217 |
5. Click on job or company links to view more details on the original posting site.
|
|
|
218 |
## Data Source
|
219 |
This application fetches data from my Private dataset which scrapes data from varoious job hosting portal and the data gets updated daily.
|
|
|
220 |
## Contact
|
221 |
For questions, feedback, or collaboration opportunities, feel free to reach out:
|
|
|
222 |
- LinkedIn: [Nihar Palem](https://www.linkedin.com/in/nihar-palem-1b955a183/)
|
223 |
""")
|
224 |
|
|
|
189 |
with col4:
|
190 |
fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f'])
|
191 |
st.plotly_chart(fig, use_container_width=True)
|
192 |
+
def display_data_explorer(df):
|
193 |
+
st.subheader("Data Explorer")
|
194 |
+
|
195 |
+
show_all = st.radio("Display", ("All Data", "Filtered Data"))
|
196 |
+
|
197 |
+
if show_all == "Filtered Data":
|
198 |
+
unique_values = get_unique_values(df)
|
199 |
+
col1, col2, col3, col4,col5 = st.columns(5)
|
200 |
+
with col1:
|
201 |
+
companies = st.multiselect("Select Companies", options=unique_values['companies'])
|
202 |
+
with col2:
|
203 |
+
locations = st.multiselect("Select Locations", options=unique_values['locations'])
|
204 |
+
with col3:
|
205 |
+
job_types = st.multiselect("Select Job Types", options=unique_values['job_types'])
|
206 |
+
with col4:
|
207 |
+
Role_Name = st.multiselect("Select Role Types", options=unique_values['Role_Name'])
|
208 |
+
with col5:
|
209 |
+
Date_posted = st.multiselect("Select Date Posted", options=unique_values['Date_posted'])
|
210 |
+
|
211 |
+
filtered_df = filter_dataframe(df, companies, locations, job_types, Role_Name,Date_posted)
|
212 |
+
else:
|
213 |
+
filtered_df = df
|
214 |
+
|
215 |
+
st.write(f"Showing {len(filtered_df)} job listings")
|
216 |
+
|
217 |
+
# Pagination
|
218 |
+
items_per_page = 15
|
219 |
+
num_pages = math.ceil(len(filtered_df) / items_per_page)
|
220 |
+
|
221 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
222 |
+
with col2:
|
223 |
+
page = st.number_input("Page", min_value=1, max_value=num_pages, value=1)
|
224 |
+
|
225 |
+
start_idx = (page - 1) * items_per_page
|
226 |
+
end_idx = start_idx + items_per_page
|
227 |
+
|
228 |
+
page_df = filtered_df.iloc[start_idx:end_idx]
|
229 |
+
|
230 |
+
def make_clickable(url):
|
231 |
+
return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'
|
232 |
+
|
233 |
+
page_df['job_url'] = page_df['job_url'].apply(make_clickable)
|
234 |
+
page_df['company_url'] = page_df['company_url'].apply(make_clickable)
|
235 |
+
|
236 |
+
st.write(page_df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
237 |
+
|
238 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
239 |
+
with col2:
|
240 |
+
st.write(f"Page {page} of {num_pages}")
|
241 |
def display_about_page():
|
242 |
st.markdown("""
|
243 |
## What is this application?
|
244 |
+
|
245 |
The Job Listings Dashboard is a powerful tool designed to provide insights into the job market. It offers a comprehensive view of job postings, allowing users to explore trends, top companies, locations, and job titles.
|
246 |
+
|
247 |
### Key Features:
|
248 |
- **Interactive Dashboard**: Visualize job market trends with dynamic charts and graphs.
|
249 |
- **Data Explorer**: Dive deep into individual job listings with advanced filtering options.
|
250 |
- **Real-time Data**: Fetch the latest job data from our Hugging Face dataset.
|
251 |
+
|
252 |
## How to use this application
|
253 |
+
|
254 |
### Dashboard
|
255 |
1. Navigate to the Dashboard using the sidebar.
|
256 |
2. View overall statistics such as total job postings, unique companies, and today's postings.
|
|
|
259 |
- Job postings over time
|
260 |
- Top locations for job opportunities
|
261 |
- Most common job titles
|
262 |
+
|
263 |
### Data Explorer
|
264 |
1. Switch to the Data Explorer using the sidebar.
|
265 |
2. Choose between viewing all data or applying filters.
|
|
|
269 |
- Job Types
|
270 |
4. Browse the filtered job listings table.
|
271 |
5. Click on job or company links to view more details on the original posting site.
|
272 |
+
|
273 |
## Data Source
|
274 |
This application fetches data from my Private dataset which scrapes data from varoious job hosting portal and the data gets updated daily.
|
275 |
+
|
276 |
## Contact
|
277 |
For questions, feedback, or collaboration opportunities, feel free to reach out:
|
278 |
+
|
279 |
- LinkedIn: [Nihar Palem](https://www.linkedin.com/in/nihar-palem-1b955a183/)
|
280 |
""")
|
281 |
|