APP1 / app.py
Nigus's picture
Update app.py
37161f1
raw
history blame
2.17 kB
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
import os
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
model = torch.hub.load('pytorch/vision:v0.9.0', 'shufflenet_v2_x1_0', pretrained=True)
model.eval()
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
title = "Image Classification Application"
description = " Thesis Title: The Development of an Image Classification Application based on Shufflenet"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1807.11164'>Shufflenet_v2 By Bekalu Nigus Dawit</a></p>"
examples = [
['dog.jpg'],['pizza.jpeg'],['mushroom.jpeg']
]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()